首页|跨机构联邦学习的激励机制综述

跨机构联邦学习的激励机制综述

扫码查看
联邦学习作为一种分布式机器学习,有效地解决了大数据时代的数据共享难题.其中,跨机构联邦学习是机构之间互相合作的一种联邦学习类型.如何在跨机构合作的过程中设计合理的激励机制十分重要.文中从跨机构合作的角度,对现有的跨机构联邦学习的激励机制研究进行了综述.首先介绍跨机构合作过程中的3个基本问题,即高隐私性、数据异质性、公平性,然后分析了以全局模型为中心和以参与者为中心这两种不同的跨机构合作模式下的激励机制设计方法,最后总结了影响跨机构合作稳定发展的几个影响因素,即参与者的数据演变、参与者合作关系变动和参与者的负面行为,并展望了跨机构联邦合作的未来方向.
Survey of Incentive Mechanism for Cross-silo Federated Learning
As a kind of distributed machine learning,federated learning effectively solves the problem of data sharing in big data era.Among them,cross-silo federated learning,as a type of federated learning in which institutions cooperate with each other,is obviously very important to design a reasonable incentive mechanism in the process of cross-silo cooperation.Based on the per-spective of cross-silo cooperation,this paper makes a comprehensive analysis of the existing incentive mechanism of cross-silo fe-derated learning.Firstly,this paper introduces three basic problems in the process of cross-silo cooperation:high privacy,data he-terogeneity,and fairness.Then,it analyzes the incentive mechanism design methods under two different cross-silo cooperation models centered on the global model and centered on participants.Finally,it summarizes the several factors that affect the stable development of cross-silo cooperation:data evolution of participants,changes in the cooperative relationship of participants,and negative behaviors of participants,and looks forward to the future direction of cross-silo federal cooperation.

Cross-silo federated learningIncentive mechanismCross-silo cooperationDistributed machine learningPrivacy com-puting

王鑫、黄伟口、孙凌云

展开 >

浙江工业大学计算机科学与技术学院 杭州 310023

浙江大学计算机科学与技术学院 杭州 310058

跨机构联邦学习 激励机制 跨机构合作 分布式机器学习 隐私计算

国家重点研发计划国家重点研发计划浙江工业大学科技项目浙江工业大学科技项目

2020YFB09060002020YFB0906004KYY-HX-20220288KYY-HX-20180649

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(3)
  • 58