首页|基于缺失数据的交通速度预测算法

基于缺失数据的交通速度预测算法

扫码查看
交通速度预测是智能交通系统的基础,可以缓解交通拥堵,节约公共资源,提高人们的生活质量.在真实情况下,采集到的交通速度数据通常存在缺失,而现有研究成果大多数只考虑了数据相对完整的场景.文章主要针对缺失场景下的交通速度数据进行研究,捕捉其中的时空相关性,并对未来交通速度进行预测.为了充分利用到交通数据的时空特征,提出了一种新的基于深度学习的交通速度预测模型.首先,提出了"还原-预测"算法,先使用自监督学习方法让模型还原缺失数据,再对交通速度进行预测;其次,引入了对比学习的方法,使得速度时间序列的特征表示更鲁棒;最后,模拟了不同数据缺失率的场景,通过实验验证了所提方法在各种缺失率下的预测准确率都优于现有方法,并设计了实验对对比学习方法和不同的还原算法进行分析,证明了所提方法的有效性.
Traffic Speed Forecasting Algorithm Based on Missing Data
Traffic speed forecasting is the foundation of intelligent transportation system,which can ease traffic congestion,save public resources and improve people's quality of life.In real situations,the collected traffic speed data are usually missing,and most of the existing research results only consider the scenarios with relatively complete data.The paper focuses on the traffic speed data in the missing scenarios,captures the spatio-temporal correlation,and predicts the future traffic speed.In order to make full use of the spatio-temporal characteristics of traffic data,this study proposes a new deep learning-based traffic speed forecasting model.Firstly,a"recover-predict"algorithm is designed,which first uses a self-supervised learning method to enable the model to recover the missing data and then predict the traffic speed.Secondly,a contrastive learning method is introduced to make the feature representation of the speed time series more robust.Finally,the scenarios with different missing data rates are simulated,and experimental results show that the prediction accuracy of the proposed method outperform existing methods with various missing rates,and experiments are designed to analyze the comparative learning method and different recovery algorithms to prove the effectiveness of the proposed method.

Traffic speed forecastingRecovery of missing dataGraph neural networkContrastive learningDeep learning

黄坤、孙未未

展开 >

复旦大学计算机科学技术学院 上海 200438

上海市数据科学重点实验室(复旦大学) 上海 200438

上海智能电子与系统研究院 上海 200438

交通速度预测 缺失数据还原 图神经网络 对比学习 深度学习

国家自然科学基金

62172107

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(3)
  • 28