首页|基于双分支串行混合注意力的输电线路缺陷检测深度神经网络模型

基于双分支串行混合注意力的输电线路缺陷检测深度神经网络模型

扫码查看
检测输电线路缺陷并及时维修可以确保电网的安全稳定,具有重大的实际意义.但输电线路图像背景复杂、元件尺寸小,导致现有的目标检测模型不能取得很好的效果,因此文中提出了基于双分支串行混合注意力的输电线路缺陷检测深度神经网络模型.该模型设计了 DBSA(Dual-branch Serial Attention)双分支串行混合注意力,从而将更多的权重放在缺陷上,并提出了 WCFPN(Well-connected Feature Pyramid Network)特征金字塔,让经DBSA提取的特征充分融合,从而增强模型检测小 目标的能力.DBSA将特征图沿高度和宽度两个分支压缩并用一维卷积提取注意力,WCFPN设计了一种包含跨尺度融合和跳层连接的新型融合路径,让经DBSA提取的高层语义信息和低层空间信息进行更充分的交互.最后在绝缘子自爆、防振锤损坏、鸟巢异物、水泥杆破损和输电线路缺陷5个数据集上进行实验,结果显示所提模型取得了最佳的检测效果,在5个数据集上的平均AP5.和AP分别为84.3%和46.1%,相比目前最先进的模型YOLOv7分别提升了 3.7%和3%.
Deep Neural Network Model for Transmission Line Defect Detection Based on Dual-branch Sequential Mixed Attention
Detecting defects in transmission lines and repairing them in a timely manner is of great practical significance for ensu-ring the safety and stability of the power grid.However,due to the complex background and small component size of transmission line images,existing object detection models cannot achieve satisfactory results.Therefore,this paper proposes a deep neural net-work model for detecting defects in transmission lines based on dual-branch serial attention.The model designs dual-branch serial attention(DBSA)to allow the model to focus more weight on the defects,and proposes well-connected feature pyramid network(WCFPN)to enable full fusion of the features extracted by DBSA,thereby improving the model's ability to detect small targets.DBSA compresses the feature map along the height and width branches and extracts attention using one-dimensional convolution to achieve fine-grained control over the features.WCFPN designs a new fusion path that includes cross-scale fusion and skip-layer connections,allowing high-level semantic information and low-level spatial information extracted by DBSA to interact more fully.Finally,experiments are conducted on five transmission line datasets,including insulator explosion,damaged anti-vibration hammer,bird's nest debris,broken cementpole and transmission line defect,and the proposed model achieves the best detection performance.The average AP50and AP of the five datasets is 84.3%and 46.1%,respectively,which is 3.7%and 3%higher than that of the state-of-the-art model YOLOv7.

Power defectObject detectionAttention mechanismFeature pyramid network

郝然、王红军、李天瑞

展开 >

西南交通大学计算机与人工智能学院 成都 611756

可持续城市交通智能化教育部工程研究中心 成都 611756

电网缺陷 目标检测 注意力机制 特征金字塔

国家自然科学基金国家自然科学基金

6217622162276216

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(3)
  • 21