首页|基于依赖类型剪枝的双特征自适应融合网络用于方面级情感分析

基于依赖类型剪枝的双特征自适应融合网络用于方面级情感分析

扫码查看
现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能.然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限.此外,一些句子本身并不符合标准的句法结构.以往的研究以同样的置信度利用句法信息和语义信息,没有充分考虑它们对于确定方面词极性的贡献的不同,导致模型在相应的数据集上性能较差.为了克服这些困难,文中提出了一种基于依赖类型剪枝的双特征自适应融合网络.具体来说,该模型使用一种新型的混合方法,命名为依赖关系类型剪枝和邻接矩阵平滑,来缓解句法解析产生的噪声.此外,该模型通过双特征自适应融合模块充分考虑句子的句法信息的可用程度,以一种更灵活的方式将句法特征和语义特征结合起来用于方面级情感分析.在5个公开可用的数据集上进行广泛的实验,结果证明了该方法明显优于基线模型.
Dual Feature Adaptive Fusion Network Based on Dependency Type Pruning for Aspect-based Sentiment Analysis
Existing models use graph neural network based on dependency trees for aspect-based sentiment analysis,which im-proves the classification performanceof the model to a certain extent.However,due to technical limitations of dependency par-sing,the inaccuracy of the dependency parsing results leads to a large amount of noise in the dependency tree,which makes the performance improvement of the model is limited.In addition,some sentences themselves do not conform to the standard syntactic structure.Previous studies utilized syntactic and semantic information with the same confidence level without fully considering the difference in their contributions to determining the polarity of aspect words,resulting in poor model performance on the corres-ponding datasets.To overcome these challenges,a dual feature adaptive fusion network based on dependency type pruning is pro-posed in this paper.Specifically,the model uses a novel hybrid approach,named dependency type pruning and adjacency matrix smoothing,to mitigate the noise generated by dependency parsing.In addition,the model fully considers the availability of syntac-tic information of sentences through a dual feature adaptive fusion module to combine syntactic features and semantic features for aspect-level sentiment analysis in a more flexible way.Extensive experiments on five publicly available datasets demonstrate that the proposed method significantly outperforms baseline models.

Aspect-based sentiment analysisGraph neural networksDependency type pruningDual feature adaptive fusionDeep learningNatural language processing

郑诚、石景伟、魏素华、程嘉铭

展开 >

安徽大学计算机科学与技术学院 合肥 230601

计算智能与信号处理教育部重点实验室(安徽大学) 合肥 230601

方面级情感分析 图神经网络 依赖类型剪枝 双特征自适应融合 深度学习 自然语言处理

安徽省重点研究与开发计划

202004d07020009

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(3)
  • 40