针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equilib-rium optimization algorithm,VDEO).首先,结合Tent混沌映射增加初始化种群的多样性,为寻优提供基础;其次,引入可变的生成概率代替原始的固定值,使算法在迭代前期增加全局搜索能力,后期关注求解精度,以提升全局搜索和局部搜索的平衡能力;最后,融合多种差分策略和柯西变异帮助寻优过程跳出局部最优.针对包含单峰、多峰和固定维多峰在内的15个基准测试函数和 CEC2022 测试函数,将 VDEO 在多种维数下与 EO,GWO,WOA,SCA,MFO,AOA,AVOA,BWO,AH A,POA 这10个启发式算法进行仿真对比实验,并对基准测试函数的实验结果进行Wilcoxon秩和检验,实验结果表明,VDEO实现了更好的全局搜索和局部搜索的平衡,并具有更好的跳出局部最优的能力以及更高的收敛精度.
Equilibrium Optimization Algorithm Based on Variable Generation Probability and Multi-difference Cauchy Variation
In order to solve the problem that the standard equalization optimization algorithm(EO)lacks the balance ability of global search and local search and is easy to fall into local optimal,an equalization optimization algorithm(VDEO)based on varia-ble generation probability and multi-difference Cauchy variation is proposed.First,the diversity of the initial population is in-creased with Tent chaotic mapping,which provides the basis for optimization.Secondly,the variable generation probability is in-troduced to replace the original fixed value,so that the algorithm can increase the global search ability in the early stage of itera-tion,and pay attention to the solving accuracy in the later stage,so as to improve the balance ability of global search and local search.Finally,the fusion of different difference strategies and Cauchy variation helps the optimization process to escape from the local optimal.Aiming at 15 benchmark test functions including single-peak,multi-peak and fixed-dimension multi-peak and CEC2022 test functions,VDEO and ten heuristic algorithms EO,GWO,WOA,SCA,MFO,AOA,AVOA,BWO,AHA and POA are simulated and compared under multiple dimensions.The Wilcoxon rank sum test is performed on the experimental results of the benchmark function.Experimental results show that VDEO achieves better global search and local search balance,and has better ability to jump out of the local optimal and higher convergence accuracy.