首页|航母航空保障作业中异质群体的动态路径规划算法

航母航空保障作业中异质群体的动态路径规划算法

扫码查看
航母保障作业中路径规划任务存在着场景高动态性以及智能体的强异质性问题,传统的全局路径规划算法虽然能获得全局最优的结果,但无法适应高度动态变化的场景,且不能很好解决智能体的异质性所带来的安全性问题;当前的局部路径规划算法能够很好地解决智能体体型差异,但是异质群体行为控制表示难以统一表达.为了解决以上问题,提出了一种航母航空保障作业中的异质群体的动态路径规划算法.首先,将优化的全局和局部路径规划算法融合,解决航空保障作业场景的高动态性问题,根据动态环境信息及时调整路径,并充分考虑场景的高动态性给异质智能体带来的安全性问题.然后,该方法考虑异质智能体不同的行为特性,在局部碰撞避免过程中采用基于运动学特性的异质智能体行为控制模型.最后,以美国尼米兹号航母为例,使用UE4进行仿真实验,从路径长度、平滑度、安全性和避障能力等方面对该算法进行了评价.仿真实验结果表明,与其他路径规划算法相比,所提算法不仅可以生成航母甲板异质群体的安全路径,还能够满足异质群体在动态航空保障作业场景中的应用需求.
Dynamic Path Planning Algorithm for Heterogeneous Groups in Aircraft Carrier Aviation Support Operations
The path planning task in aircraft carrier support operation has the problem of high dynamic scene and strong hetero-geneity of agents.Although the traditional global path planning algorithm can obtain the global optimal results,it can not adapt to the highly dynamic changing scene,and can not solve the security problem caused by the heterogeneity of agents.The current lo-cal path planning algorithm can well solve the problem agent size difference,but it is difficult to express heterogeneous group be-havior control uniformly.In order to solve the above problems,a dynamic path planning algorithm for heterogeneous groups in aircraft carrier aviation support operations is proposed.Firstly,the optimized global and local path planning algorithms are inte-grated to solve the highly dynamic problem of the aviation support operation scene.The path is adjusted in time according to the dynamic environment information,and the security problem caused by the highly dynamic scene to the heterogeneous agents are fully considered.Secondly,the method considers the different behavior characteristics of heterogeneous agents,and adopts the be-havior control model of heterogeneous agents based on kinematics characteristics in the process of local collision avoidance.Final-ly,taking the American Nimitz as an example,and the algorithm is evaluated in aspects of path length,smoothness,security,ob-stacle avoidance ability by using UE4 simulation experiments.Simulation results show that,compared with other path planning algorithms,the proposed algorithm can not only generate safe paths for heterogeneous groups on aircraft carrier deck,but also meet the application requirements of heterogeneous groups in dynamic aviation support operation scenarios.

A*algorithmPath planningHeterogeneous agentsGAMMA algorithmBehavior control

孙迪迪、李超超

展开 >

郑州大学计算机与人工智能学院 郑州 450001

A*算法 路径规划 异质智能体 GAMMA算法 行为控制

国家自然科学基金青年基金

62102371

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(3)
  • 35