首页|RBFRadar:基于可编程数据平面检测价值突发流

RBFRadar:基于可编程数据平面检测价值突发流

扫码查看
在各种网络流量中,突发是一种常见且重要的流量模式.突发会增大网络时延并影响应用性能,因此对突发流的检测、分析和缓解对于提升网络性能和鲁棒性是有意义的.然而,当前基于逐次突发的检测方案存在显著的带宽开销和高用户负担问题.文中通过观察并分析多个场景下的突发流量特征,提出了价值突发流(Remarkable Burst Flow,RBF)检测,在降低带宽开销的同时,减少了传统突发检测中的密集手工劳动和专家经验要求,减轻了网络管理者的负担.RBFRadar是基于Sketch数据结构的框架,支持可编程数据平面上的RBF检测,在一段时间内观察流级别的突发性.该框架仅产生有限的内存占用和低时间复杂性,其原型可在PISA架构上实现.实验结果表明,在检测RBF的准确性方面,RBFRadar的F1分数是现有方案的5.6~23.4倍;在带宽开销方面,与基于逐次突发的检测方案相比,RBFRadar可降低84.62%~98.84%的带宽开销.
RBFRadar:Detecting Remarkable Burst Flows with Programmable Data Plane
Burst is a common and important traffic pattern in diverse network traffics.Since bursts may increase network latency and have a non-trivial impact on application performance,the efforts to detect,analyze and mitigate burst flows are meaningful for improving the performance and robustness of network.However,existing per-burst-based detection schemes face the limitations of significant bandwidth overheads and high user burdens.This paper proposes the detection of remarkable burst flows(RBFs)via observing and analyzing the characteristics of burst flows in various scenarios.The detection of RBFs reduces the bandwidth overheads.At the same time,such detection process avoids the requirements of intensive manual labor and expert experience,and mitigate the burdens of network operators.We propose RBFRadar,a Sketch-based RBF detection framework that supports RBF detection on programmable data plane,observing flow-level burstiness in a period.We prototype RBFRadar in PISA architecture with limited memory footprints and low time complexity.Experiments demonstrate that the F1-score of RBFRadar in RBF detec-tion is 5.6 times to 23.4 times higher than that of existing schemes.Compared with per-burst detection,the bandwidth overhead could be reduced by 84.62%to 98.84%.

Burst flow detectionSketchNetwork measurementProgrammable data planeData center network

吴艳妮、周政演、陈翰泽、张栋

展开 >

福州大学计算机与大数据学院 福州 350108

泉城省实验室 济南 250100

浙江大学计算机科学与技术学院 杭州 310013

福州大学至诚学院 福州 350002

展开 >

突发流检测 Sketch 网络测量 可编程数据平面 数据中心网络

国家重点研发计划专项国家重点研发计划专项泉城省实验室项目山东省实验室项目

2023YFB29040002023YFB2904005QCLZD202304SYS202201

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(4)
  • 38