首页|基于双流YOLOv4的金属表面缺陷检测方法

基于双流YOLOv4的金属表面缺陷检测方法

扫码查看
目前有许多学者使用深度学习进行表面缺陷检测研究,由于这些研究大都沿用主流目标检测算法的思路,注重高级语义特征,而忽视了低级语义信息(色彩、形状)对表面缺陷检测的重要性,因此导致缺陷检测效果不够理想.为解决上述问题,提出了 一种金属表面缺陷检测网络——双流YOLOv4网络,骨干网络分成两个分支,输入分为高分辨率图像和低分辨率图像,浅分支负责从高分辨率图像中提取低级特征,深分支负责从低分辨率图像中提取高级特征,通过削减两分支的层数和通道数来减少模型总参数量;为了强化低级语义特征,提出了 一种树形多尺度融合方法(Tree-structured Multi-scale Feature Fusion Me-thod,TMFF),并设计了 一个结合极化自注意力机制和空间金字塔池化的特征融合模块(Feature Fusion Module with Polarized Self-Attention Mechanism and Spatial Pyramid Pooling,FFM-PSASPP)应用到 TMFF 中.在东北大学热轧带表面缺陷数据集NEU-DET、金属表面缺陷数据集GC10-DET和伊莱特电饭煲内胆缺陷数据集Enaiter的测试集上对所提算法进行了测试,测得的map@50结果分别为0.80,0.66和0.57,相比大部分主流的用于缺陷检测的 目标检测算法均有提升,且模型参数量仅为原YOLOv4的一半,速度与YOLOv4接近,可满足实际使用需求.
Metal Surface Defect Detection Method Based on Dual-stream YOLOv4
Currently,many researchers use deep learning for surface defect detection.However,most of these studies follow the mainstream object detection algorithm and focus on high-level semantic features while neglecting the importance of low-level se-mantic information(color,shape)for surface defect detection,resulting in unsatisfactory defect detection effect.To address this issue,a metal surface defect detection network called the dual-stream YOLOv4 network is proposed.The backbone network is split into two branches,with inputs consisting of high-resolution and low-resolution images.The shallow branch is responsible for extracting low-level features from the high-resolution image,while the deep branch is responsible for extracting high-level fea-tures from the low-resolution image.The model's total parameter volume is reduced by cutting down the number of layers and channels in both branches.To enhance the low-level semantic features,a tree-structured multi-scale feature fusion method(TM-FF)is proposed,and a feature fusion module with a polarized self-attention mechanism and spatial pyramid pooling(FFM-PSASPP)is designed and applied to the TMFF.The algorithm's map@50 results on the test sets of the Northeastern University hot-rolled strip surface defect dataset(NEU-DET),the metal surface defect dataset(GC10-DET),and the enaiter rice cooker inner pot defect dataset are 0.80,0.66,and 0.57,respectively.Compared to most mainstream object detection algorithms used for de-fect detection,there is an improvement,and the model's parameter volume is only half that of the original YOLOv4,with a speed close to YOLOv4,making it suitable for practical use.

Metal surface defect detectionObject detectionYOLOv4Dual-stream backbone networkMulti-scale feature en-hancement

徐浩、李丰润、陆璐

展开 >

华南理工大学计算机科学与工程学院 广州 510640

金属表面缺陷检测 目标检测 YOLOv4 双流骨干网络 多尺度特征强化

广东省重点领域研发计划中山市产学研重大项目

2022B0101070001201602103890051

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(4)
  • 39