首页|基于GAANET的立体匹配算法

基于GAANET的立体匹配算法

扫码查看
端到端的立体匹配算法在计算时间和匹配效果上均有一定的优势,近年来在立体匹配任务中得到了广泛的应用.但特征提取的过程中存在特征冗余、信息丢失,以及多尺度特征融合不充分等问题,造成算法的计算量和复杂度偏高,也影响了匹配的精度.针对上述问题,在自适应聚合网络AANET的基础上,设计了更加适合立体匹配的特征提取模块,提出了改进的幽灵自适应聚合网络GAANET.采用G-Ghost阶段提取多尺度的特征,通过廉价操作生成部分特征,减少特征的冗余现象并有效保存浅层特征;采取高效的通道注意力机制,将不同的权重分配到每个通道中;采取改进的特征金字塔结构,缓解传统金字塔中的通道信息丢失并优化融合特征,为各个尺度的特征进行丰富的信息补充.在SceneFlow,KITT12015和KITTI2012数据集上进行训练和评估,评估结果显示,与基础方法相比,所提改进算法的精度分别提升了 0.92%,0.25%和0.20%,且参数量减少了 13.75%,计算量减少了 4.8%.
Algorithm of Stereo Matching Based on GAANET
End-to-end stereo matching algorithms have become increasingly popular in stereo matching tasks due to their advanta-ges in computational time and matching accuracy.However,feature extraction in such algorithms can result in redundant fea-tures,information loss,and insufficient multi-scale feature fusion,thereby increasing computational complexity and decreasing matching accuracy.To address these challenges,an improved ghost adaptive aggregation network(GAANET)is proposed based on the adaptive aggregation network(AANET),and its feature extraction module is improved to make it more suitable for stereo matching tasks.Multi-scale features are extracted in the G-Ghost phase,and partial features are generated through low-cost ope-rations to reduce feature redundancy and preserve shallow features.An efficient channel attention mechanism is implemented to allocate weights to each channel,and an improved feature pyramid structure is introduced to mitigate channel information loss in traditional pyramids and optimize feature fusion,thus enhancing information supplement for features across scales.The proposed GAANET model is trained and evaluated on the SceneFlow,KITTI2015,and KITTI2012 datasets.Experimental results demons-trate that GAANET outperforms the baseline method,with accuracy improvements of 0.92%,0.25%,and 0.20%,respectively,while reducing parameter volume by 13.75%and computational complexity by 4.8%.

Stereo matchingFeature extractionEnd-to-end stereo matching networkAttention moduleDeep learning

宋昊、毛宽民、朱洲

展开 >

华中科技大学机械科学与工程学院 武汉 430074

立体匹配 特征提取 端到端立体匹配网络 注意力模块 深度学习

宁夏回族自治区重点研发计划

2021BFH02001

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(4)
  • 20