首页|结合卷积神经网络与多层感知机的渐进式多阶段图像去噪算法

结合卷积神经网络与多层感知机的渐进式多阶段图像去噪算法

扫码查看
现有基于深度学习的图像去噪方法中,在网络架构层面存在单阶段网络特征表达能力不足而难以在复杂场景下重构清晰图像,以及多阶段网络内部特征连接不紧密而容易丢失原始图像细节的问题.在基础构建块层面,存在卷积层难以处理较大噪声级别下的跨层次特征,以及全连接层难以捕获图像邻域空间细节的问题.为解决以上问题,从两方面提出解决方法:一方面,在架构层面提出新颖的跨阶段门控特征融合,从而更好地连接一阶段网络的浅层特征与二阶段的深层特征,促进信息流的交互并使得去噪网络内部关联更为紧密,同时避免丢失原始像素细节;另一方面,在基础构建块层面提出结合卷积神经网络和多层感知机特性的双轴特征偏移块,作用于低分辨率多通道数的特征图,从而缓解卷积网络在复杂噪声场景下难以捕获跨层次特征依赖关系的问题,对于高分辨率、少通道数的特征图,使用卷积网络以充分提取噪声图像的空间邻域依赖关系.大量定量与定性实验表明,所提算法在真实世界图像去噪和高斯噪声去除任务中,都以较小的参数量和计算代价取得了最佳的PSNR和 SSIM.
Progressive Multi-stage Image Denoising Algorithm Combining Convolutional Neural Network and Multi-layer Perceptron
Among the existing image denoising methods based on deep learning,there are problems at the network architecture dimension that single-stage network is hard to represents feature dependency and it is difficult to reconstruct clear images in com-plex scenarios.The internal features of multi-stage networks are not tightly connected and the original image details are easily lost.At the basic building block dimension,there are problems that the convolutional layer is difficult to handle cross-level fea-tures at large noise levels,and the fully connected layer is difficult to capture the spatial details of the image locality.To solve the above problems,this paper proposes solutions from two aspects.On the one hand,a novel cross-stage gating feature fusion is pro-posed at the architecture dimension,so as to better connect the shallow features of the first-stage network with the deep features of the second-stage network,promote the interaction of information flow and make the internal correlation of the denoising net-work closer,while avoiding the loss of original spatial details.On the other hand,a dual-axis shifted block combining convolu-tional neural network(CNN)and multi-layer perceptron(MLP)is proposed,which is applied to low-resolution and multi-channel number feature maps to alleviate the problem of insufficient learning ability of CNN on cross-level feature dependencies in com-plex noise scenarios.And CNN is used to focus on high-resolution feature maps with low channel number to fully extract the spa-tial local dependencies of noisy images.Many quantitative and qualitative experiments prove that the proposed algorithm achieves the best peak signal-to-noise ratio(PSNR)and structural similarity(SSIM)denoising indicators with a small number of parame-ters and computational costs in real-world image denoising and Gaussian noise removal tasks.

Image processingImage denoisingDeep learningConvolutional neural networkMulti-layer perceptronFeature fusion

薛金强、吴秦

展开 >

江南大学人工智能与计算机学院 江苏无锡 214122

江苏省模式识别与计算智能工程实验室 江苏无锡 214122

图像处理 图像去噪 深度学习 卷积神经网络 多层感知机 特征融合

国家自然科学基金

61972180

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(4)
  • 45