首页|基于可穿戴设备的开放集动作识别技术研究

基于可穿戴设备的开放集动作识别技术研究

扫码查看
随着智能手表、手环等可穿戴设备的普及,将其用于人体行为识别领域并从中解码出人类行为活动,对于健康监测、日常行为分析、智能家居等应用具有重要意义.然而,传统的动作识别算法存在特征提取困难、识别准确率较低等问题,并且均基于封闭集假设,即所有的训练数据和测试数据均来自同一个标签空间,而现实世界中大多都是开放集(Open-Set)场景,在测试阶段可能会将未知标签样本送入模型,从而导致分类错误.文中针对人体动作识别问题,提出了多通道自适应卷积网络(Multi-channel Adaptive Convolutional Network,MCACN),针对传统CNN网络特征提取仅局限于一个小范围内的问题,自适应卷积模块能够使用不同大小的卷积核提取不同时间跨度的特征,并自动计算权重求和.此外MCACN的多通道结构使各传感器数据得以分头进行处理,获得能够区分相近动作的特征细节.最后,设计了基于标签的多元变分自编码器,提出了用于开放集识别的模型MC ACN-V AE.该模型能够通过计算重建误差来识别未知类,聚焦于已知类别动作,提高了模型的健壮性.实验结果表明,在封闭集实验中,MCACN模型能够有效地对动作进行识别,对7种日常动作的识别准确率均达到了 91%以上,总体准确率达到了 95%.在开放集实验中,MCACN-VAE在不同开放度下对于已知类别的总体识别准确率均达到了 89%以上,对于未知动作片段的识别准确率也保持在75%以上,证明了所提模型能够有效拒绝未知类,识别已知类.
Study on Open Set Activity Recognition Technology Based on Wearable Devices
With the popularity of wearable devices such as smart watches and bracelets,using them for human activity recognition and decoding human behavior is of great significance for health monitoring,daily behavior analysis,smart home and other applica-tions.However,traditional action recognition algorithms have problems such as difficult feature extraction and low recognition ac-curacy,and are all based on the close set assumption,that is,all training data and test data come from the same label space,while most of the real world is open.In the open-set scene,unknown label samples may be sent to the model during the test phase,re-sulting in incorrect classification.This paper proposes a multi-channel adaptive convolutional network(MCACN)for human acti-vity recognition.For the problem that the traditional CNN network feature extraction is limited to a small range,the adaptive con-volution module can use convolution kernels of different sizes to extract features of different time spans,automatically calculate the weights and sum them up.In addition,the multi-channel structure of MCACN enables each sensor data to be processed sepa-rately to obtain feature details that can distinguish similar actions.Finally,this paper designs a label-based multivariate variational autoencoder,and proposes MCACN-VAE for open set recognition.The model can identify unknown classes by calculating recons-truction loss,focusing on known class actions,and improving the robustness of the model.Experimental results show that in the closed set experiment,the MCACN model can effectively recognize the actions,and the accuracy of the recognition of seven daily actions has reached more than 91%,the overall accuracy has reached 95%.In the open set experiment,the overall recognition ac-curacy of MCACN-VAE for known categories has reached more than 89%at different degrees of openness,and the recognition accuracy of unknown action segments has also remained above 75%.It proves that the proposed model can effectively reject un-known classes and identify known classes.

Wearable devicesActivity recognitionAdaptive convolutionOpen set recognition

王佳昊、闫航、胡鑫、赵德鑫

展开 >

电子科技大学信息与软件工程学院 成都 610051

军事科学院国防科技创新研究院 北京 100071

可穿戴设备 动作识别 自适应卷积 开放集识别

电子科技大学智小金智能家居联合研究中心项目内江市科技孵化和成果转化专项四川省科技支撑计划四川省科技支撑计划

H04W2101802021KJFH0042022YFG02122021YFG0024

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(4)
  • 24