首页|基于残差网络融合多关系评论特征的虚假评论检测

基于残差网络融合多关系评论特征的虚假评论检测

扫码查看
随着电子商务和短视频社区平台的兴起,涌现出的虚假评论严重影响了用户体验.甚至为了对抗平台检测,伪装的评论(Review Camouflage)更加难以辨别.当前基于图神经网络(Graph Neural Networks,GNNs)的虚假评论检测方法在深层训练过程中容易出现网络退化和梯度消失问题.同时评论伪装导致评论标记更加倾斜,从而影响GNNs检测模型的鲁棒性.针对以上问题,提出了一种基于残差网络的检测方法MRDRN,可融合多关系评论特征进行虚假评论识别.首先,为了减缓网络退化,结合残差网络进行深层评论特征提取,并给出一种新的邻居混合采样策略,可根据评论之间的特征相似性进行低阶及高阶邻居混合采样,从而缓解评论标记不均衡的问题并学习更加丰富的评论特征.其次,提出了一种多关系评论特征融合策略,通过关系内评论网络拓扑与多关系间评论特征的整体融合,来减小评论伪装的影响.在3个真实数据集上进行实验,结果表明,MRDRN相比基准方法具有更高的检测能力和更强的鲁棒性.
Fake Review Detection Based on Residual Networks Fusion of Multi-relationship Review Features
With the rise of e-commerce and short video community platforms,the emergence of fake reviews has seriously affected user experience.Even to combat platform detection,review camouflage makes it harder to distinguish between true and false.Cur-rent fake review detection methods based on graph neural networks(GNNs)are prone to network degradation and gradient disap-pearance during deep training.At the same time,review camouflage causes review markers to skew more,which affects the ro-bustness of GNNs detection model.To solve the above problems,a detection method based on residual network(MRDRN)is pro-posed,which can fuse the features of multi-relationship reviews to identify fake reviews.Firstly,in order to slow down network degradation,the feature extraction of deep reviews is carried out by combining residual network.A new neighbor mixed sampling strategy is proposed,which can be used to conduct low-and high-order neighbor mixed sampling according to the feature similari-ty between reviews,so as to alleviate the problem of imbalanced review marks and learn more rich review features.Secondly,a multi-relationship review features fusion strategy is proposed,which reduces the impact of review masking by integrating intra re-lationship review network topology and inter relationship review features as a whole.Experimental results on three real datasets show that MRDRN has higher detection capability and stronger robustness than the standard method.

Fake review detectionGraph neural networkResidual networkReview camouflageMulti-relationship features fu-sion

雒泽阳、田华、窦英通、李曼文、张泽华

展开 >

太原理工大学信息与计算机学院 山西晋中 030600

伊利诺伊大学芝加哥分校 芝加哥60607

虚假评论检测 图神经网络 残差网络 评论伪装 多关系特征融合

国家自然科学基金国家自然科学基金教育部产学合作协同育人项目山西省回国留学人员科研项目

617023565190115220200216801132020-040

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(4)
  • 29