首页|基于动态选择预测器的深度强化学习投资组合模型

基于动态选择预测器的深度强化学习投资组合模型

扫码查看
近年来,投资组合管理问题在人工智能领域得到了广泛的研究,但现有的基于深度学习的量化交易方法还存在一些问题.首先,对股票的预测模式单一,通常一个模型只能训练出一个交易专家,交易决策也仅根据模型预测结果作出;其次,模型使用的数据源相对单一,只考虑了股票自身数据,忽略了整个市场风险对股票的影响.针对上述问题,提出了基于动态选择预测器的强化学习模型(DSDRL).该模型分为3部分,首先提取股票数据的特征并传入多个预测器中,针对不同的投资策略训练多个预测模型,用动态选择器得到当前最优预测结果;其次,利用市场环境评价模块对当前市场风险进行量化,得到合适的投资金额比例;最后,在前两个模块的基础上建立了一种深度强化学习模型模拟真实的交易环境,基于预测的结果和投资金额比例得到实际投资组合策略.文中使用中证500和标普500的日k线数据进行测试验证,结果表明,此模型在夏普率等指标上均优于其他参照模型.
Deep Reinforcement Learning Portfolio Model Based on Dynamic Selectors
In recent years,portfolio management problems have been extensively studied in the field of artificial intelligence,but there are some improvements in the existing quantitative trading methods based on deep learning.First of all,the prediction model of stocks is single,usually a model only trains a trading expert,and the decision of trading is only based on the prediction results of the model.Secondly,the data source used in the model is relatively single,only considering the stock's own data,ignoring the impact of the entire market risk on the stock.Aiming at the above problems,a reinforcement learning model based on dynamic se-lection predictor(DSDRL)is proposed.The model is divided into three parts.Firstly,the characteristics of stock data are extrac-ted and introduced into multiple predictors.Multiple prediction models are trained for different investment strategies,and the cur-rent optimal prediction results are obtained by dynamic selector.Secondly,the market environment evaluation module is used to quantify the current market risk and obtain the appropriate proportion of investment amount.Finally,based on the first two mo-dules,a deep reinforcement learning model is established to simulate the real trading environment,and the actual portfolio strate-gy is obtained based on the predicted results and the proportion of investment amount.In this paper,the daily k-line data of China Securities 500 and S & P 500 are used for test verification.The results show that the proposed model is superior to other refe-rence models in Sharpe rate and other indicators.

Reinforcement learningLSTMInvestment portfolioStock market forecastNeural networks

赵淼、谢良、林文静、徐海蛟

展开 >

武汉理工大学理学院 武汉 430070

广东第二师范学院计算机学院 广州 510303

强化学习 LSTM 投资组合 股市预测 神经网络

广东省自然科学基金广州市基础研究计划基础与应用基础研究项目广东省普通高等学校自然科学类特色创新项目

2020A15150112082021020803532019KTSCX117

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(4)
  • 31