首页|基于对抗策略类别特定的多样性时间序列shapelets提取

基于对抗策略类别特定的多样性时间序列shapelets提取

扫码查看
在时间序列分类任务中,通过提取时间序列的shapelets进行分类的方法因分类准确率高且具有良好的可解释性而受到广泛关注.针对现有方法学习到的shapelets是所有类共享,可以区分大多数类但不能准确地区分某一类和其他类,以及使用对抗策略的模型生成的shapelets存在多样性不足等问题,提出了一种基于对抗策略类别特定的多样性时间序列shapelets提取方法.该方法将类别信息嵌入时间序列,采用多生成器模块对抗地生成多个有差别的类别特定shapelets,再通过施加差异约束来提高shapelets的多样性,最后使用shapelet转换得到的特征对时间序列进行分类.在36个时间序列数据集上与5种基于shapelets的算法和11种先进的分类算法进行实验对比,实验结果表明,所提方法分别在36个数据集中的26个和20个数据集上取得了最优结果,且均取得了最高的平均秩,平均分类准确率相比其他方法最少提高了 2.4%,最多提高了 17.8%.消融性分析以及可视化分析验证了多样性和类别特定的思路在时间序列分类上的有效性.
Category-specific and Diverse Shapelets Extraction for Time Series Based on Adversarial Strategies
For time series classification,the method of classification by extracting the shapelets of time series and has attracted widespread attention due to its high classification accuracy and good interpretability.Most of the existing shapelets-based me-thods learn the shared shapelets for all classes,which can distinguish most classes,but not the unique class.Besides,the shapelets obtained by those models using adversarial strategies have problems like insufficient diversity.In order to solve these problems,this paper proposes a category-specific and diverse shapelets extraction method based on adversarial strategies.This method em-beds the category information into the time series,adversarially generates a number of different category-specific shapelets by using the multi-generator module.The diversity of shapelets are guaranteed by imposing a difference constraint,and the last step uses the features obtained by the shapelets transformation to classify the time series.The proposed method is experimentally compared with 5 shapelets-based algorithms and 11 state-of-the-art classification algorithms on 36 time-series datasets.Experi-mental results show that,compared with 5 shapelets-based algorithms and 11 advanced classification algorithms,the proposed method achieves the best results on 26 and 20 datasets out of 36 datasets,and both achieve the highest average ranks,and its ave-rage classification accuracy is 2.4%higher than other methods at least,and 20%higher at most.Ablation analysis and visualiza-tion analysis demonstrate the effectiveness of diversity and category-specific approaches to time series classification.

Time seriesshapeletsCategory-specificDiversityAdversarial networks

罗颖、万源、王礼勤

展开 >

武汉理工大学理学院 武汉 430070

时间序列 shapelets 类别特定 多样性 对抗网络

中央高校基本科研业务费专项

2021Ⅲ030JC

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 33