首页|结合图对比学习的多图神经网络会话推荐方法

结合图对比学习的多图神经网络会话推荐方法

扫码查看
会话推荐根据匿名用户短期内的交互数据预测下一个交互物品.针对会话中物品少、物品长尾分布等特性,现有基于图对比学习的会话推荐模型提出对会话内物品采用随机裁剪、扰动等方式构造正负样本.然而,上述随机退出策略进一步缩减较短会话中的可用物品,使得会话更加稀疏,引起会话兴趣学习偏差.为此,提出了结合图对比学习的多图神经网络会话推荐方法.其核心思想是:在物品局部图、物品全局图等上提取融入物品局部和全局的高阶邻域物品表示,并生成物品级的会话表示,然后设计会话-会话图并学习会话级的会话表示,最后递归利用不同级别会话兴趣生成正负样本对,通过对比学习机制增强会话兴趣区分性.与退出策略相比,所提模型保留了完整的会话信息,实现了真正的数据扩充.在两个基准数据集上进行了大量实验,结果表明,该算法的推荐性能远优于主流基线方法.
Graph Contrast Learning Based Multi-graph Neural Network for Session-based Recommendation Method
Session recommendation predicts the next interaction item based on anonymous user interaction data over a short pe-riod of time.Sessions have characteristics such as few items and long-tail distribution of items.Existing session recommendation models based on graph contrast learning construct positive and negative samples by randomly cropping and perturbing the items within a session,etc.However,the above random exit strategy further shrinks the available items in shorter sessions.This makes the sessions more sparse and causes session interest learning bias.To this end,a graph contrast learning based multi-graph neural network for session-based recommendation method is proposed.The core idea is as follows:the model extracts item representa-tions on item local graphs as well as item global graphs,incorporating both local and global higher-order neighborhood informa-tion of the items.Based on this,the model generates item-level session representations.Then,Session-level session representations are learned on the session-session graph.Finally,the model recursively generates positive and negative sample pairs using diffe-rent levels of conversational interest.And the discriminative nature of the session interests is enhanced by the contrast learning mechanism.Compared with the exit strategy,the proposed model preserves the complete session information and achieves true da-ta expansion.Extensive experiments on two benchmark datasets show that the recommendation performance of the algorithm is much better than that of the mainstream baseline approach.

Session recommendationGraph contrast learningGraph neural networksSession interestPositive and negative samples

卢敏、原子婷

展开 >

中国民航大学计算机科学与技术学院 天津 300300

智慧机场理论与系统民航局重点实验室 天津 300300

会话推荐 图对比学习 图神经网络 会话兴趣 正负样本

中央高校基本科研业务费专项

3122021090

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 25