首页|基于双域稀疏Transformer的变电站设备故障预警方法

基于双域稀疏Transformer的变电站设备故障预警方法

扫码查看
利用变电站电气设备运行时产生的时间序列数据,可以构建其未来运行状态的预测模型,从而提前发现异常数据,排除故障隐患,提升变电站的稳定性和可靠运行能力.Transformer模型是一种新兴的序列化数据处理模型,在面对较长序列时更具优势,可以满足故障预警前瞻性的需求.然而Transformer的模型结构使其具有较高的计算复杂度与空间占用率,难以直接应用到故障预警任务中.据此提出了一种基于时间序列预测的变压器设备故障预警方法,通过改进Transformer模型实现对设备运行数据的建模.该模型使用双塔式的编码器结构提取序列在频域和时域的特征,将时间特征数据和空间特征数据进行多维数据融合,从而提取更细致的信息.其次,用稀疏化处理的注意力机制代替标准的注意力机制,降低Transformer的计算复杂度和空间占用率,以满足实时预警的需求.在ETT变压器设备数据集上通过实验证明了所提模型的优越性,以及所改进的模块的必要性.相较于其他方法,该模型在多数预测任务中的MSE与MAE指数都达到了最优,尤其在长序列预测任务中表现出了更佳的性能,且预测速度更快.
Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer
Using the time series data generated during the operation of substation electrical equipment,a predictive model can be constructed for its future operating state,thereby detecting abnormal data in advance,eliminating hidden faults,and improving stability and reliable operation ability.The Transformer model is an emerging sequential data processing model that has advanta-ges when dealing with longer sequences and can meet the forward-looking needs of malfunction alarm.However,the model struc-ture of Transformer makes it difficult to be directly applied to malfunction alarm tasks due to its high computational complexity and space occupancy.Therefore,a Transformer equipment malfunction alarm method based on time series prediction is proposed,which improves the Transformer model to achieve modeling of equipment operation data.The model uses a dual-tower encoder structure to extract features of sequences in both frequency and time domains,and performs multi-dimensional data fusion on time feature data and space feature data to extract more detailed information.Secondly,sparse attention mechanism is used instead of standard attention mechanism to reduce the computational complexity and space occupancy rate of Transformer and meet the needs of real-time warning.The superiority of the proposed model and the necessity of the improved module are demonstrated by experiments on ETT transformer equipment dataset.Compared with other methods,the proposed model achieves optimal MSE and MAE indices in most prediction tasks,especially in long sequence prediction tasks,and has faster prediction speed.

Equipment malfunction alarmTime series forecastingDeep learningTransformer

张建亮、李洋、朱春山、薛泓林、马军伟、张丽霞、毕胜

展开 >

国网山西信通公司 太原 030021

设备故障预警 时间序列预测 深度学习 Transformer

国家电网山西省电力公司科技项目

52051C220003

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 36