首页|集成全尺度融合和循环注意力的医学图像分割网络

集成全尺度融合和循环注意力的医学图像分割网络

扫码查看
深度学习中的编解码网络在图像特征提取和分层特征融合方面具有卓越的性能,常被用于医学图像分割.但是,目前主流的编解码网络分割方法仍面临编码和解码阶段单一网络挖掘的图像特征信息不足,以及仅使用简单的跳跃连接而无法充分利用全尺度特征包含的粗粒度信息和细粒度信息等问题.为了解决上述问题,提出了一种集成全尺度融合和循环注意力的医学图像分割网络.首先,在U-Net编码器中加入了结合多层感知机(MLP)的卷积MLP模块来提取图像的全局特征信息,用于扩大编码器的特征感受野.其次,通过全尺度特征融合模块使得各尺度跳跃连接特征进行粗粒度信息和细粒度信息的有效融合,减小各尺度跳跃连接特征间的语义差异,突出图像的关键特征信息.最后,解码器通过提出的结合循环神经网络(RNN)和注意力机制的循环注意力解码模块(RADU)来逐级精细化图像特征信息,加强特征提取的同时避免信息冗余,并得到高精度分割结果.在4个数据集上将所提方法与主流较优的方法进行比较,所提方法在像素精度和骰子相似系数两个指标上的图像分割精度均有提高.因此,所提出的用于医学图像分割的编解码网络利用全尺度特征融合模块和循环注意力解码模块,能够获得较优异的高精度分割结果,并且模型具有良好的噪声鲁棒性和抗干扰能力.
Medical Image Segmentation Network Integrating Full-scale Feature Fusion and RNN with Attention
The encoder-decoder network in deep learning has excellent performance in image feature extraction and hierarchical feature fusion,and is often used in medical image segmentation.However,the current mainstream encoding and decoding network segmentation methods still face two problems:1)in encoding and decoding stages,image feature information mined by a single network may be insufficient;2)encoder-decoder networks using simple skip connections cannot fully exploit the contextual infor-mation of full-scale features.Therefore,aiming at the shortcomings of the existing methods,an encoder-decoder network integra-ting full-scale feature fusion and RNN with attention for medical image segmentation is proposed.At first,the convolutional multi-layer perceptron(MLP)module combined with MLP is introduced in U-Net encoder to further expand the feature receptive field of the encoder.Secondly,by the full-scale feature fusion module,the skip connection features of each scale are effectively fused with coarse-grained information and fine-grained information.This operation reduces the semantic difference between the skip-connection features of each scale and highlights the key feature information of the image.Finally,the decoder refines the image feature information level by level through the proposed recurrent attention decoding module(RADU)combining recurrent neural network(RNN)and attention mechanism,which strengthens feature extraction while avoiding information redundancy,and obtains the final segmentation results.The proposed method is compared with the mainstream algorithms on BrainWeb,MR-brainS,HVSMR and Choledoch datasets,the image segmentation precision is improved in pixel accuracy and dice similarity coeffi-cient.Therefore,experimental results show that by introducing the full-scale feature fusion module and the proposed RADU,the proposed method can achieve excellent segmentation results in image segmentation applications and has good noise robustness and anti-interference ability.

Medical image segmentationEncoder-Decoder networkMulti-layer perceptronFull-scale feature fusionAttention mechanismRecurrent neural network

单昕昕、李凯、文颖

展开 >

华东师范大学通信与电子工程学院上海市多维度信息处理重点实验室 上海 200241

医学图像分割 编解码网络 多层感知机 全尺度特征融合 注意力机制 循环神经网络

国家自然科学基金上海市自然科学基金上海市优秀学术带头人计划上海市科委项目

6227315022ZR142100021XD143060022DZ2229004

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 34