首页|基于多尺度注意力的遥感影像建筑物提取研究

基于多尺度注意力的遥感影像建筑物提取研究

扫码查看
基于深度学习的遥感影像建筑物提取方法具有覆盖范围广、运算效率高的特点,在城市建设、灾害防治等方面有着重要的实际意义.主流方法大多采用多尺度特征融合的方式使神经网络能够学习到更丰富的语义信息,然而由于受到多尺度特征的复杂性以及其他类别地物的干扰,该类方法往往存在着目标漏检与噪声密集的问题.对此,文中设计并实现了一种结合注意力机制的特征解译模型MGA-ResNet50(MGAR).该方法的核心在于利用多头注意力对高等级语义信息进行分层加权处理,以提取出表征效果较好的最优特征组合;而后使用门控结构将每维特征图与对应编码端的低级语义信息融合,来解决局部建筑物细节信息丢失的问题.在 Massachusetts Building,WHU Building等公开数据集上的实验结果表明,与RAPNet,GAM-Net,GSM等较为先进的多尺度特征融合方法相比,所提算法能够取得更高的F1与IoU指标.
Study on Building Extraction from Remote Sensing Image Based on Multi-scale Attention
Building extraction from remote sensing images based on deep learning has the characteristics of wide coverage and high computational efficiency,and it plays an important role in urban construction,disaster prevention and other aspects.Most of the mainstream methods use multi-scale feature fusion to enable the neural network to learn more abundant semantic information.However,due to the complexity of multi-scale features and the interference of other ground objects,this kind of methods often lead to target missing and noise-intensive.To this end,this paper proposes a feature interpretation model MGA-ResNet50(MGAR)that combines attention mechanism.The core of the method is to use the multihead attention to process the hierarchical weighting of high-level semantic information,so as to extract the optimal feature combination with relatively better representation effect.Then use the gating structure to fuse the feature map of each dimension with the low-level semantic information of the cor-responding encoder to compensate for the loss of local building details.Experimental results on public datasets such as Massachu-setts Building and WHU Building show that the proposed algorithm can achieve higher F1 and IoU than the more advanced multi-scale feature fusion methods such as RAPNet,GAMNet and GSM.

Deep learningBuilding extractionMulti-scale featureMultihead attentionGating mechanism

赫晓慧、周涛、李盼乐、常静、李加冕

展开 >

郑州大学地球科学与技术学院 郑州 450052

郑州大学计算机与人工智能学院 郑州 450001

深度学习 建筑物提取 多尺度特征 多头注意力 门控机制

河南省科技重大专项

201400210900

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 24