首页|基于双平滑函数秩近似和群稀疏的高光谱图像恢复模型

基于双平滑函数秩近似和群稀疏的高光谱图像恢复模型

扫码查看
高光谱图像(HSI)具有良好的光谱识别能力,被广泛地应用于各种领域.然而,HSI在成像过程中易受到混合噪声的污染,会严重削弱后续任务的准确性,如何高质量地恢复HSI是需要解决的首要问题.目前,基于低秩先验和全变分正则化结合的HSI去噪方法取得了较好的性能,但这些方法一方面忽略了高强度条纹噪声在空间结构和光谱分布上的特征,使得噪声无法完全去除,另一方面没有考虑HSI差分图像低秩子空间的信息,不能挖掘潜在的局部空间光滑结构.为此,提出了一种基于双平滑函数秩近似和群稀疏的HSI恢复模型.首先,利用双平滑函数秩近似模型探索干净HSI和条纹噪声的低秩结构,去除结构化条纹噪声等高强度混合噪声.其次,将基于E3DTV的群稀疏正则化融入双平滑函数秩近似模型中,充分挖掘HSI差分图像的稀疏先验信息,进一步提升图像在空间恢复和光谱特征保留方面的性能.最后,设计了交替方向乘子法(ADMM)求解所提出的BSRAGS模型.仿真和真实数据实验均表明,所提模型能够有效提高图像恢复质量.
Hyperspectral Image Recovery Model Based on Bi-smoothing Function Rank Approximation and Group Sparse
Hyperspectral image(HSI)has good spectral recognition capabilities and is widely used in various fields.However,HSI is susceptible to mixed noise pollution during imaging,which will seriously weaken the accuracy of subsequent tasks,and how to recover HSI with high quality is the first problem that needs to be solved.At present,the HSI denoising methods based on the combination of low-rank prior and total variational regularization have achieved good performance.On the one hand,these methods ignore the characteristics of high-intensity stripe noise in spatial structure and spectral distribution,so that the noise can-not be completely removed,and on the other hand,they do not consider the information of low-rank subspace of HSI differential images,then cannot explore the potential local spatial smooth structure.In order to solve these problems,an HSI recovery model based on bi-smoothing function rank approximation and group sparse is proposed.Firstly,the bi-smoothing function rank approxi-mation model is used to explore the low-rank structure of clean HSI and stripe noise,which can remove high-intensity mixed noise such as structured stripe noise.Secondly,the group sparse regularization based on E3DTV is integrated into the bi-smoothing function rank approximation model,which can fully exploit the sparse prior information of HSI differential images and further im-proves the performance of images in spatial recovery and spectral feature retention.Finally,an alternating direction multiplier method(ADMM)is designed to solve the proposed BSRAGS model.Simulation and real data experiments show that the proposed model can effectively improve the image restoration quality.

Hyperspectral imageSmoothing functionGroup sparseLow-rank constraintStripe noiseE3DTV

姜斌、叶军、张历洪、司伟纳

展开 >

南京邮电大学理学院 南京 210023

高光谱图像 平滑函数 群稀疏 低秩约束 条纹噪声 E3DTV

国家自然科学基金南京邮电大学校内基金

61971234NY220209

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 26