首页|结合句法增强与图注意力网络的方面级情感分类

结合句法增强与图注意力网络的方面级情感分类

扫码查看
方面级情感分类旨在识别给定特定方面文本的情感极性,在本领域中,将图神经网络与句法依赖解析相结合是当下热门的研究方向之一,此类方法通过句法解析捕捉句子中词与词之间的关系,依此构建图结构,输入图神经网络中得到情感极性.若句法解析器出现解析错误,将会对以图为基础的图神经网络模型产生巨大影响.为了增强解析器生成的句法依赖树的解析结果,文中提出了 一种句法增强图注意力网络,该网络通过融合多个解析器的解析结果,提高句法依赖解析精度,得到更精准的依赖关系句法图;在图注意力网络中使用密集连接机制捕获更丰富的特征,更适配于增强后的句法图,同时引入方面注意力机制捕获方面语义特征.实验结果验证了句法增强方法的有效性,在3个基准数据集上的分类准确度都有所提高,在方面级情感分析领域具有较好的表现.
Combining Syntactic Enhancement with Graph Attention Networks for Aspect-based Sentiment Classification
Aspect-level sentiment classification aims to identify the emotional polarity of a given aspect text.In this field,the com-bination of graph neural network and syntactic dependency parsing is one of the current hot research directions.Based on the rela-tionship between them,the graph structure is constructed and input into the graph neural network to obtain the emotional polari-ty.If the syntax parser makes a parsing error,the impact on the graph-based graph neural network model will be huge.In order to enhance the parsing results of the syntactic dependency tree generated by the parser,a syntactically enhanced graph attention net-work is proposed.By fusing the parsing results of multiple parsers,the parsing accuracy of syntactic dependencies is improved,and a more accurate dependency syntactic graph is obtained.A densely connected mechanism is used in graph attention networks to capture richer features,which are more suitable for enhanced syntactic graphs,and the aspect attention mechanism is intro-duced to capture aspect semantic features.Experimental results verify the effectiveness of the syntactic enhancement method.The classification accuracy on the three benchmark datasets has been improved,and it has a better performance in the field of aspect-level sentiment analysis.

Aspect-level sentiment analysisDependency parsingSyntax enhancementGraph attention networkDense connection

张泽宝、余翰男、王勇、潘海为

展开 >

哈尔滨工程大学计算机科学与技术学院 哈尔滨 150000

哈尔滨工程大学电子政务建模仿真国家工程实验室 哈尔滨 150000

方面级情感分析 依赖解析 句法增强 图注意力网络 密集连接

国家自然科学基金教育部人文社会科学研究项目国家重点研发计划

6207213520YJCZH1722022YFC3301800

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 37