首页|求解不可分离非凸非光滑问题的线性惯性ADMM算法

求解不可分离非凸非光滑问题的线性惯性ADMM算法

扫码查看
针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Iner-tial Alternating Direction Method of Multipliers,LIADMM).为了方便子问题的求解,对目标函数中的耦合函数H(x,v)进行线性化处理,并在x-子问题中引入惯性效应.在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Łojasiewicz不等式的辅助函数,验证了算法的强收敛性.通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好.
Linear Inertial ADMM for Nonseparable Nonconvex and Nonsmooth Problems
In this paper,a linear inertial alternating direction multiplier method(LIADMM)is proposed for the nonconvex non-smooth miniaturisation problem of the objective function containing the coupling function H(x,y),and to facilitate the solution of the subproblems,the objective function is linearised and the inertial effect is introduced into the x-subproblem.To facilitate the solution of the subproblem,the coupling functionH(x,y)is linearised in the objective function and the inertial effect is intro-duced into the x-subproblem.The global convergence of the algorithm is established under appropriate assumptions,and the strong convergence of the algorithm is proved by introducing auxiliary functions satisfying the Kurdyka-Łojasiewicz inequality.Two numerical experiments show that the algorithm with the introduction of inertial effect converges has better convergence per-formance than the algorithm without inertial effect.

Coupling function H(xy)Nonconvex nonsmooth optimizationAlternating direction method of multipliers(ADMM)Inertial effectKurdyka-Łojasiewicz inequality

刘洋、刘康、王永全

展开 >

华东政法大学智能科学与信息法学系 上海 201620

上海理工大学管理学院 上海 200093

耦合函数H(x,y) 非凸非光滑优化 交替乘子方向法 惯性效应 Kurdyka-Łojasiewicz不等式

国家重点研发计划国家重点研发计划国家重点研发计划国家社会科学基金重大项目上海市哲学社会科学规划课项目教育部人文社会科学研究青年基金中国犯罪学学会重大项目

2023YFC33061002023YFC33061052023YFC330610320&ZD1992023EFX01120YJC820030FZXXH2022A02

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(5)
  • 22