首页|基于多目标优化算法NSGA-Ⅱ的软件多样化组合方法

基于多目标优化算法NSGA-Ⅱ的软件多样化组合方法

扫码查看
软件多样化因能有效提升系统弹性、增加恶意二进制分析的成本而被广泛应用于软件开发等场景中.而如何对现有软件多样化技术进行组合部署,以在获得更高安全增益的同时保持较低的性能开销,是当前软件多样化研究的核心问题之一.针对现有软件多样化组合方法中搜索算法效率低、搜索空间小、安全性评估指标不全面、难以综合考量软件多样化对各类攻击的影响等问题,提出了一种基于多 目标优化算法的软件多样化组合方法,将软件多样化组合问题构建为综合考量TLSH相似度、gadget质量分数和CPU时钟周期数指标的多 目标优化模型,并设计了包括染色体编码、自适应交叉和变异算子,以及针对组合方案的有效性验证算法等在内的NSGA-Ⅱ求解算法.最后,在GNU核心工具组数据集上进行实验,结果表明,该组合方法可有效生成高安全增益、低性能开销的软件多样化组合方案.
Software Diversity Composition Based on Multi-objective Optimization Algorithm NSGA-Ⅱ
Software diversity is widely used in scenarios such as software development because it effectively improves system re-silience and the cost of malicious binary analysis.How to collaboratively deploy the existing diversity techniques to obtain higher security gains while ensuring lower performance overhead is one key issue of software diversity research.The search algorithm of the existing software diversity composition methods is inefficient,the search space is small,and the security evaluation metric is not comprehensive,so it is difficult to comprehensively reflect the impact of software diversity on various attacks.To solve these problems,a software diversity composition method based on multi-objective optimization algorithm is proposed.The software di-versity composition problem is constructed as a multi-objective optimization model that comprehensively considers TLSH simila-rity,gadget quality and CPU clock cycles.A solution algorithm based on NSGA-Ⅱ including chromosome encoding,adaptive crossover and mutation operators,and validation algorithm for composition scheme is designed for the model.Experimental re-sults show that the proposed method can effectively generate software diversity composition with high security gain and low performance overhead.

Software diversityMulti-objective optimizationNSGA-Ⅱ algorithmDiversity technique compositionQuantitative evaluation

谢根琳、程国振、梁浩、王庆丰

展开 >

解放军战略支援部队信息工程大学 郑州 450001

软件多样化 多目标优化 NSGA-Ⅱ算法 多样化技术组合 量化评估

国家重点研发计划国家重点研发计划国家自然科学基金国家自然科学基金

2021YFB10062002021YFB10062016207246762002383

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 25