首页|基于图神经网络的乳腺癌病理图像分析方法综述

基于图神经网络的乳腺癌病理图像分析方法综述

扫码查看
病理诊断是癌症诊断和治疗过程中的金标准,利用人工智能模型对癌症病理图像进行自动分析不仅可以减轻病理学家的工作负担,还可以提高诊断结果的准确性.然而,病理图像的大尺度特点以及对预测结果可解释性的高要求为人工智能模型带来了巨大的挑战.在近年来的研究中,图神经网络在建模图像中实体的空间上下文关系及可解释性方面都展现出了强大的能力,为数字病理的研究提供了新的思路.文中回顾了近年来计算机视觉领域的相关工作,分析了图神经网络在乳腺癌病理图像分析中的优势,分类和比较了现有的面向乳腺癌病理图像的图构建方法,分析和对比了乳腺癌病理图像分析中的图神经网络模型,整理了近年来的研究中常用的工具包与公开数据集,总结了基于图神经网络的乳腺癌病理图像分析研究中存在的挑战并对未来的研究方向进行了展望.
Survey of Breast Cancer Pathological Image Analysis Methods Based on Graph Neural Networks
Pathological diagnosis is the gold standard for cancer diagnosis and treatment,the use of artificial intelligence(AI)models for analyzing pathological images has the potential to not only reduce the workload of pathologists but also improve the accuracy of cancer diagnosis and treatment.However,these methods face challenges due to the large scale of pathological images and the difficulty in interpreting the predicted results.In recent studies,graph neural networks have shown their strong abilities in modeling spatial context and interpretability of entities in images,which provides a new idea for the study of digital pathology.In this survey,we review recent related works in computer vision,analyze the advantages of graph neural networks for breast cancer pathology,classify and compare existing graph construction methods,and analyze and compare graph neural network models pro-posed in recent years.We also summarize the challenges that exist in using graph neural networks for analyzing pathological ima-ges of breast cancer and prospect the future research directions.

Breast cancer pathological imageGraph neural networkGraph classificationDigital pathology

陈思硕、王晓东、刘西洋

展开 >

西安电子科技大学计算机科学与技术学院 西安 710126

乳腺癌病理图像 图神经网络 图分类 数字病理

国家自然科学基金国家自然科学基金青年科学基金

821728608210101340

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 73