首页|异质虹膜识别研究综述

异质虹膜识别研究综述

扫码查看
虹膜图像采集环境和设备的不同导致虹膜注册和识别样本差异较大,给传统的虹膜识别技术带来了挑战.异质虹膜识别问题已成为学术界和工业界关注的焦点.文中从不同层级、样本差异性以及单源和多源3个角度对现有的异质虹膜识别方法进行了分类和综述,总结了 目前异质虹膜识别的最新进展.按照跨质量、跨设备和跨光谱的分类对现有的异质虹膜数据集进行综述,并总结概述虹膜识别评价指标,以便研究人员更好地评估和验证算法的性能.最后,从环境鲁棒性、数据异质性建模和多模态融合3个方向,对未来异质虹膜识别研究的发展方向进行了展望.
Review of Heterogeneous Iris Recognition
The variations in iris image acquisition environment and devices result in significant disparities in iris registration and recognition samples,which brings challenges to the traditional iris recognition technology.Heterogeneous iris recognition has emerged as a focal point of interest in both academic and industrial domains.This paper classifies and summarizes the existing he-terogeneous iris recognition methods from three perspectives:different levels,sample distinctiveness,and single-source versus multi-source scenarios,and summarizes the latest advancements in heterogeneous iris recognition.Existing heterogeneous iris datasets are reviewed according to the classification of cross-quality,cross-device and cross-spectrum,and the iris recognition evaluation metrics are summarized so that researchers can better evaluate and validate the algorithm performance.Finally,the fu-ture development direction of heterogeneous iris recognition is prospected,focusing on three aspects:environmental robustness,modeling of data heterogeneity and multimodal fusion.

Iris recognitionHeterogeneous imagesBiometricsDeep learning

孔佳琳、张琪、王财勇

展开 >

中国人民公安大学信息网络安全学院 北京 100038

北京建筑大学电气与信息工程学院 北京 100044

虹膜识别 异质图像 生物特征 深度学习

国家自然科学基金国家自然科学基金中国人民公安大学课程建设项目

61906199621060152022KCJS026

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 60