首页|基于眼部特征频域信息的早期疲劳检测

基于眼部特征频域信息的早期疲劳检测

扫码查看
行李X光安检员工作疲劳是造成错检、漏检的重要原因.目前疲劳检测的方法主要通过发现打哈欠、打瞌睡和长时间闭眼等明显的迹象来检测中晚期疲劳,然而对于安检工作人员来说,出现这样明确的标志时,可能已经发生了安检事故,此时再进行疲劳检测为时已晚.因此,在早期阶段发现疲劳,并对疲劳的发生及时预警是非常有价值的.由于早期疲劳会有细微的面部表现特性,时域参数的不可逆性导致其无法完全表示.为了解决此问题,提出了 一种基于眼部特征频域信息的行李X光安检员早期疲劳检测方法,将原始时域信息转换到表达能力更强的频域特征空间.该方法首先通过面部检测算法获取眼部横纵比(Eye Aspect Ratio,EAR)时间序列;然后利用频域特征提取方法得到频域特征序列,来表示更加细微的特征;最后利用分层多尺度网络HM-LSTM进行训练及验证.在公开数据集UTA-RLDD上的对比实验结果表明,所提方法对早期疲劳的识别率提升了 2%,证明了频域特征比时域特征有更好的表达能力.
Early-stage Fatigue Detection Based on Frequency Domain Information of Eye Features
The fatigue of baggage X-ray security inspector is an important cause of false and missed inspection.Previous work in this field mostly focused on detecting extreme fatigue with explicit signs such as yawning,nodding off and prolonged eye closure.However,for security inspectors,such explicit signs may not appear until only before an accident,and it is too late to detect fa-tigue.Thus,there is significant value in detecting fatigue at an early stage,to warn the occurrence of fatigue in time.Due to the subtle facial performance characteristics of early-stage fatigue,the irreversibility of time-domain parameters leads to its inability for complete representations.To solve this problem,an early-stage fatigue detection method for baggage X-ray security inspectors based on the frequency domain information of eye features is proposed,which converts the original time domain information into a more expressive frequency domain feature space.It firstly obtained the eye aspect ratio series through the facial detection algo-rithm,then the time-domain features are transformed into frequency-domain space for analysis to mine more subtle features.Fi-nally,HM-LSTM is used for training and verification.Experiment is conducted on the dataset UTA-RLDD.The results show that the proposed architecture improves the recognition rate of early-stage fatigue by 2%,demonstrating that frequency domain features have better expression ability than time domain features.

Eye aspect ratioFrequency domain featureTime-Frequency transformEarly-stage fatigueAirport security

火星星、胡瑞敏、李怡欣

展开 >

西安电子科技大学网络与信息安全学院 西安 710126

西安电子科技大学杭州研究院 杭州 310000

眼睛横纵比 频域特征 时频转换 早期疲劳 机场安检

国家自然科学基金南宁市重点研发计划

U22A203520231042

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 29