首页|基于改进Swin Transformer的中心点目标检测算法

基于改进Swin Transformer的中心点目标检测算法

扫码查看
针对Swin Transformer在提取局部特征信息和特征表达能力上存在的不足,提出了 一种基于改进Swin Transformer的中心点目标检测算法,以提高其在目标检测方面的性能.通过调整网络结构和引入反卷积模块来增强网络对局部特征信息的提取能力,利用 自适应二维高斯核和回归头模块检测目标中心点来增强特征表达能力,并在Swin Transformer block模块中加入dropout激活函数,以缓解网络过拟合问题.在Pascal VOC和MS COCO 2017数据集上分别对改进后的算法进行验证,实验结果表明,改进后的Swin Transformer算法在Pascal VOC数据集上的精确度达到了 81.1%,在MS COCO数据集上的精确度达到了 37.2%,明显优于其他主流目标检测算法.
Center Point Target Detection Algorithm Based on Improved Swin Transformer
Aiming at the shortcomings of Swin Transformer in extracting local feature information and expressing features,this paper proposes a center point target detection algorithm based on improved Swin Transformer to improve its performance in tar-get detection.By adjusting the network structure and introducing a deconvolution module to enhance the network's ability to ex-tract local feature information,using an adaptive two-dimensional Gaussian kernel and a regression head module to detect the cen-ter point of the target,so as to enhance the feature expression ability,and adding a dropout activation function to the Swin Trans-former block module to alleviate the network overfitting problem.The improved algorithm is validated on the Pascal VOC and MS COCO 2017 datasets,respectively.The experimental results show that the improved Swin Transformer algorithm achieves an ac-curacy of 81.1%on the Pascal VOC dataset and 37.2%on the MS COCO dataset,significantly superior to other mainstream ob-ject detection algorithms.

Deep learningImage processingObject detectionDeconvSwin Transformer

刘家森、黄俊

展开 >

重庆邮电大学通信与信息工程学院 重庆 400065

深度学习 图像处理 目标检测 反卷积 Swin Transformer

国家自然科学基金

61771085

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 17