首页|图神经网络研究综述

图神经网络研究综述

扫码查看
随着人工智能的快速发展,深度学习已经在图像、文本和语音等可在欧氏空间表示的数据中取得了巨大成功,但却一直无法很好地应用于非欧氏空间.近年来,图神经网络在非欧几里得空间中展现出了强大的表示学习能力,并广泛应用于推荐系统、自然语言处理以及机器视觉等众多领域.图神经网络模型基于信息的传播机制,具体地,图中的 目标节点通过聚合邻居节点的信息来更新自身的嵌入表示.利用图神经网络,可将众多现实问题(如社交网络、知识图谱和药物化学成分等)抽象成图网络,借助图中的连接边,对不同节点之间的依赖关系进行合理建模.鉴于此,对图神经网络进行了系统综述,首先介绍了图结构数据方面的基础知识,然后对图游走算法和不同类型的图神经网络模型进行了系统梳理.进一步地,详细阐述了当前图神经网络的通用框架和应用领域,最后对图神经网络的未来进行了总结与展望.
Review of Graph Neural Networks
With the rapid development of artificial intelligence,deep learning has achieved great success in data that can be repre-sented in Euclidean spaces,such as images,text,and speech.However,it has been difficult to apply deep learning to non-Eucli-dean spaces.In recent years,with the emergence of graph neural networks,it has demonstrated powerful representation learning abilities in non-Euclidean spaces and has been widely applied in various fields such as recommendation systems,natural language processing,and computer vision.The graph neural network model is based on the mechanism of information propagation.Specifi-cally,the target node in the graph updates its embedding representation by aggregating the information of neighboring nodes.With graph neural networks,many real-world problems(such as social networks,knowledge graphs,and drug chemical composi-tions)can be abstracted into graph networks and the dependence relationships between different nodes can be modeled reasonably using the connecting edges in the graph.Therefore,this paper systematically reviews graph neural networks,introduces the basic knowledge of graph-structured data,and systematically reviews graph walk algorithms and different types of graph neural net-work models.Furthermore,it also details the current general framework and application areas of graph neural networks,and con-cludes with a summary and outlook on future research in graph neural networks.

Graph-structure dataGraph walk algorithmGraph convolutional networksGraph attention net worksGraph residual networksGraph recurrent networks

侯磊、刘金环、于旭、杜军威

展开 >

青岛科技大学数据科学学院 山东青岛 266061

中国石油大学(华东)计算机科学与技术学院 山东青岛 266580

图结构数据 图游走算法 图卷积神经网络 图注意力网络 图残差网络 图递归网络

国家自然科学基金国家自然科学基金山东省自然科学基金山东省自然科学基金

6220225362172249ZR2021QF074ZR2021MF092

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 84