首页|基于知识辅助的结构化医疗报告生成

基于知识辅助的结构化医疗报告生成

扫码查看
医疗报告自动生成是文本摘要生成技术的重要应用.由于医疗问诊数据与通用领域的数据特征存在着明显的差异,传统的文本摘要生成方法不能充分理解并利用医疗文本中高复杂性的医疗术语,因此医疗问诊中包含的关键知识并没有得到充分的利用.此外,传统的文本摘要生成方法大多是直接生成摘要,并没有针对医疗报告结构化的特点自动选择过滤关键信息并生成结构化文本的能力.针对上述问题,提出了一种知识辅助的结构化医疗报告生成方法.该方法将实体引导的先验领域知识与结构引导的任务解耦机制相结合,实现了对医疗问诊数据的关键知识与医疗报告的结构化特点的充分利用.在IMCS21数据集上的实验验证了所提方法的有效性,其生成摘要的ROUGE分数与同类方法相比提升了 2%~3%,生成了更准确的医疗报告.
Generation of Structured Medical Reports Based on Knowledge Assistance
Automatic generation of medical reports is an important application of text summarization technology.Due to the ob-vious difference between the medical consultation data and data of the general field,the traditional text summary generation me-thod cannot fully understand and utilize the highly complex medical terms in the medical text,so that the key knowledge con-tained in the medical consultation has not been fully used.In addition,most of the traditional text summary generation methods directly generate summaries,and do not have the ability to automatically select and filter key information and generate structured text according to the structural characteristics of medical reports.In order to solve the above problems,a knowledge-assisted structured medical report generation method is proposed in this paper.The proposed method combines the entity-guided prior do-main knowledge with the structure-guided task decoupling mechanism,and realizes the key knowledge of medical consultation da-ta,taking full advantage of the structured features of medical reports.The effectiveness of the method is verified on the IMCS21 dataset.The ROUGE score of the summary generated by our method is 2%to 3%higher than that of baseline methods,and a more accurate medical report is generated.

Medical report generationPre-training modelGenerative summarizationDomain knowledge priorTask decoupling mechanism

史继筠、张驰、王禹桥、罗兆经、张美慧

展开 >

北京理工大学计算机学院 北京 100081

新加坡国立大学计算机学院 新加坡 117417

医疗报告生成 预训练模型 生成式摘要 领域知识先验 任务解耦机制

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 24