首页|融合帖文属性的性别歧视言论检测模型

融合帖文属性的性别歧视言论检测模型

扫码查看
性别歧视言论检测是通过自然语言处理技术来识别文本是否具有性别歧视的倾向,为净化网络环境提供有力支持.当前相关研究仅关注帖文本身,未对帖文属性(用户、帖文以及主题)间的关系进行挖掘.为此,提出一种融合帖文属性的性别歧视言论检测模型,通过构建异构图来挖掘帖文属性间的关系.首先,利用ERNIE对帖文内容进行词嵌入,通过BiGRU模型提取上下文依赖关系,得到句子表征;然后,基于帖文属性关系构建异构图,并利用异构图注意力网络(Heterogeneous Graph Attention Network)得到帖文内容的关系表示;最后,融合帖文内容的关系表示与句子表征,通过Softmax函数进行分类.实验结果表明,所提模型可以提升性别歧视言论检测的准确率.
Gender Discrimination Speech Detection Model Fusing Post Attributes
Gender discrimination speech detection is to identify whether the text has the tendency of gender discrimination through NLP technology,which provides strong support for purifying the network environment.The limitation of current resear-ches is that they pay more attention to the posts itself,while the exploration of relationships among post attributes(user,post,and theme)is overlooked.Motivated by this issue,this paper proposes a model to mine the relationships among post attributes by constructing heterogeneous graphs.Firstly,the word embeddings of post content are generated by ERNIE,subsequently,the con-textual dependencies are extracted using BiGRU,and thus the sentence representation is obtained.Then,the heterogeneous graph based on the relationships among post attributes is constructed,and the heterogeneous graph attention network is further em-ployed to obtain the relationship representation of the post.Finally,the sentence representation and relationship representation are fused as input of the Softmax function for classification.Experimental results show that the proposed model can improve the effect of gender discrimination speech detection.

Gender discrimination speechPost attributesBiGRUHeterogeneous graphHeterogeneous graph attention network

王小龙、王琰慧、张顺香、汪才钦、周渝皓

展开 >

安徽理工大学计算机科学与工程学院 安徽淮南 232001

合肥综合性国家科学中心人工智能研究院 合肥 230000

淮南师范学院计算机学院 安徽淮南 232038

性别歧视言论 帖文属性 BiGRU 异构图 异构图注意力网络

国家自然科学基金面上项目认知智能全国重点实验室开放基金安徽省高等学校协同创新项目

62076006COGOS-2023HE02GXXT-2021-008

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 30