首页|基于时变计算资源的联邦学习设备选择算法

基于时变计算资源的联邦学习设备选择算法

扫码查看
联邦学习(Federated Learning,FL)是一种新兴的分布式机器学习范式,其核心思想是用户设备以分布式的方式在本地训练模型,且无需上传原始数据,仅需将训练后的模型上传到服务器进行模型聚合.现有研究大多忽略了设备的计算资源会随着用户的使用模式而发生时序性变化,这会影响FL的训练进度.文中针对异构设备具有时变计算资源的特点,使用 自回归模型对时变计算资源进行建模,并提出了 一个设备选择算法.首先构造了长期训练时间约束下最小化每轮FL平均训练时间的优化问题,接着采用李雅普诺夫优化理论对其进行转化,最后求解得到设备选择算法.实验结果表明,与基线算法相比,所提算法能够在基本保证模型质量的同时缩短FL的训练时间和设备的平均等待时间.
Federated Learning Client Selection Scheme Based on Time-varying Computing Resources
Federated learning(FL)is an emerging paradigm for distributed machine learning,whose core idea is that user devices train their models locally in a distributed manner and do not need to upload raw data,but only upload the trained model to the server for model aggregation.Most of the existing studies ignore that the computing resources of devices change temporally with the usage patterns of users,which can affect the training of FL.In this paper,we model time-varying computing resources for he-terogeneous devices using an auto regressive model and propose a client selection algorithm.We first formulate the optimization problem of minimizing the average training time of each round of FL under the long-term training time constraint,then transform it using Lyapunov optimization theory,and finally solve it to obtain the client selection algorithm.Experimental results show that compared with the baseline algorithms,the proposed algorithm can reduce the training time of FL and the average waiting time of the devices while basically remaining the quality of model.

Federated learningClient selectionTime-varying computing resourcesUnbalanced data

刘建勋、张幸林

展开 >

华南理工大学计算机科学与工程学院 广州 510006

联邦学习 设备选择 时变的计算资源 不平衡数据

国家自然科学基金广东省基础与应用基础研究区域联合基金-重点项目

623721852021B1515120078

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 24