首页|基于融合序列的远控木马流量检测模型

基于融合序列的远控木马流量检测模型

扫码查看
针对现有远控木马流量检测方法泛化能力较弱、表征能力有限和预警滞后等问题,提出了一种基于融合序列的远控木马流量检测模型.通过深入分析正常应用网络流量与远控木马流量在包长序列、包负载长度序列和包时间间隔序列方面的差异,将流量表征为融合序列.将融合序列输入Transformer模型,利用多头注意力机制与残差连接挖掘融合序列内在联系,学习木马通信行为模式,有效地提升了对远控木马流量的检测能力与模型的泛化能力.所提模型仅需提取网络会话的前20个数据包进行检测,就能够在木马入侵早期做出及时预警.对比实验结果表明,模型不仅在已知数据中具有优异的检测效果,在未知流量测试集上同样表现出色,相比当前已有的深度学习模型,各项检测指标有较大提升,在远控木马流量检测领域具备实际应用价值.
Remote Access Trojan Traffic Detection Based on Fusion Sequences
In response to the issues of weak generalization ability,limited representation capability,and delayed warning in exis-ting remote access Trojan(RAT)traffic detection methods,a RAT traffic detection model based on a fusion sequence is pro-posed.By deeply analyzing the differences between normal network traffic and RAT traffic in packet length sequence,packet pay-load length sequence,and packet time interval sequence,traffic is represented as a fusion sequence.The fusion sequences are input into a Transformer model that utilizes multi-head attention mechanisms and residual connections to mine the intrinsic relation-ships within the fusion sequences and learn the patterns of RAT communication behavior,effectively enhancing the detection ca-pability and generalization ability of the model for RAT traffic.The model only needs to extract the first 20 data packets of a net-work session for detection and can issue timely warnings in the early stages of Trojan intrusion.Comparative experimental results show that the model not only achieves excellent results in known data but also performs well in unknown traffic test sets.Com-pared with existing deep learning models,it presents superior performance indicators and has practical application value in the field of RAT traffic detection.

Remote access Trojan detectionFusion sequencesTransformer modelMulti-head attention mechanismTrojan behavior patterns

吴丰源、刘明、尹小康、蔡瑞杰、刘胜利

展开 >

郑州大学网络空间安全学院 郑州 450001

信息工程大学网络空间安全学院 郑州 450001

远控型木马检测 融合序列 Transformer模型 多头注意力机制 木马行为模式

国家重点研发计划科技委基础加强项目

2019QY13002019-JCJQ-ZD-113

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(6)
  • 34