首页|基于TCN-A模型的高效查询负载预测算法

基于TCN-A模型的高效查询负载预测算法

扫码查看
针对大数据查询领域中出现的由于查询负载随时间动态变化且难以有效预测所导致的数据库管理系统无法及时优化的问题,提出了一种基于新型时间序列预测模型的查询负载预测算法.首先,该算法采用过滤、时域间隔划分以及查询负载构造等技术对原始的历史用户查询进行预处理,得到便于网络模型分析处理的查询负载序列.其次,所提算法以时间卷积神经网络为核心构建时序预测模型,提取查询负载数据的历史变化趋势及自相关性特征,高效地实现时序预测;同时,融入设计的时域注意力机制,对查询负载序列进行重要性加权,保证模型的分析计算效率,提升算法的预测性能.最后,基于上述时序预测模型,充分利用查询间隔时间完成对未来查询负载的精确预测,使得数据库管理系统得以预先实现自身性能调优,以适应工作负载的动态变化.实验结果表明,设计的查询负载预测算法在多个评价指标中均表现出良好的预测性能,并且能够在查询时间间隔内更加精确地预测未来查询负载的变化.
Efficient Query Workload Prediction Algorithm Based on TCN-A
The query workload prediction algorithm based on a novel time series prediction model is proposed to address the pro-blem of database management system cannot be optimized in time due to the dynamic change of query workload and the difficulty of forecasting effectively in the field of big data querying.First of all,the algorithm preprocesses the original historical users'queries by filtering,temporal interval partition and query workload construction to obtain the query workload sequence which is convenient for the network model to analyze and process.Secondly,the algorithm constructs a time series prediction model with temporal convolution network as the core,extracts the historical trend and auto-correlation characteristics of query workload,and realizes the time series prediction efficiently.At the same time,the algorithm integrates the designed temporal attention mecha-nism to weight the important query workloads to ensure that the query workload sequence can be analyzed and calculated effi-ciently by the model,and thus improving the performance of prediction algorithm.Finally,the algorithm uses the above time se-ries prediction model to make full use of the query interval time to accurately predict the future query workloads,so that the data-base management system can achieve self-performance tuning in advance to adapt to the dynamic change of the workloads.Expe-rimental results show that the designed query workload prediction algorithm exhibits good prediction performance on several evaluation metrics and is able to predict future query workload accurately over the query time interval.

Temporal convolutional networkAttention mechanismQuery workload

白文超、白淑雯、韩希先、赵禹博

展开 >

哈尔滨工业大学计算学部 哈尔滨 150001

开封大学信息化管理中心 河南开封 475004

哈尔滨工业大学计算学部 山东威海 264209

时间卷积神经网络 注意力机制 查询负载

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(7)