首页|融入多影响力与偏好的图对比学习社交推荐算法

融入多影响力与偏好的图对比学习社交推荐算法

扫码查看
目前,基于图神经网络的社交推荐方法主要对社交信息和交互信息的显式关系和隐式关系进行联合建模,以缓解冷启动问题.尽管这些方法较好地聚合了社交关系和交互关系,但忽略了高阶隐式关系并非对每个用户都有相同的影响,并且监督学习的方法容易受到流行度偏差的影响.此外,这些方法主要聚焦用户和项目之间的协作关系,没有充分利用项目之间的相似关系.因此,文中提出了一种融入多影响力与偏好的图对比学习社交推荐算法(SocGCL).一方面,引入节点间(用户和项目)融合机制和图间融合机制,并考虑了项目之间的相似关系.节点间融合机制区分图内不同节点对目标节点的不同影响;图间融合机制聚合多种图的节点嵌入表示.另一方面,通过添加随机噪声进行跨层图对比学习,有效缓解了社交推荐的冷启动问题和流行度偏差.在两个真实数据集上进行实验,结果表明,SocGCL优于其他基线方法,有效提高了社交推荐的性能.
Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation
At present,social recommendation methods based on graph neural network mainly alleviate the cold start problem by jointly modeling the explicit and implicit relationships of social information and interactive information.Although these methods aggregate social relations and user-item interaction relations well,they ignore that the higher-order implicit relations do not have the same impacts on each user.And these supervised methods are susceptible to popularity bias.In addition,these methods mainly focus on the collaborative function between users and items,but do not make full use of the similarity relations between items.Therefore,this paper proposes a social recommendation algorithm(SocGCL)that incorporates multiple influences and prefe-rences into graph contrastive learning.On the one hand,a fusion mechanism for nodes(users and items)and a fusion mechanism for graphs are introduced,taking into account the similarity relations between items.The fusion mechanism for nodes distingui-shes the different impacts of different nodes in the graph on the target node,while the fusion mechanism for graphs aggregates the node embedding representations of multiple graphs.On the other hand,by adding random noise for cross-layer graph contras-tive learning,the cold start problem and popularity bias of social recommendation can be effectively alleviated.Experimental re-sults on two real-world datasets show that SocGCL outperforms the baselines and effectively improves the performance of social recommendation.

Social RecommendationAttention MechanismGraph Contrastive LearningGraph Neural Networks

胡海波、杨丹、聂铁铮、寇月

展开 >

辽宁科技大学计算机与软件工程学院 辽宁鞍山 114051

东北大学计算机科学与工程学院 沈阳 110169

社交推荐 注意力机制 图对比学习 图神经网络

国家自然科学基金国家自然科学基金辽宁省教育厅科学研究项目

6207208462072086LJKMZ20220646

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(7)
  • 2