首页|一种基于YOLOX_s的雾天场景目标检测方法

一种基于YOLOX_s的雾天场景目标检测方法

扫码查看
文中提出了一个基于深度可分离卷积和注意力机制的雾天目标检测模型,旨在实现在雾天场景中对目标的快速、准确检测.该模型由去雾模块和检测模块组成,并在训练过程中共同训练.为确保模型在雾天场景中检测的准确性和实时性,在去雾模块方面,采用AODNet对输入图像进行去雾处理,以降低雾对图像中待检测目标的干扰,在检测模块中使用改进后的YOLOX_s模型,输出目标的分类置信度和位置坐标.为提升网络的检测性能,在YOLOX_s基础上采用深度可分离卷积和注意力机制来提高特征提取能力,扩大特征图感受野.所提模型能提高有雾场景中模型的检测精度,且不增加模型参数量和计算量.实验结果表明,所提模型在RTTS数据集和合成有雾目标检测数据集上均表现出色,有效提高了模型在雾天场景中的检测精度.与基准模型相比,平均精度(mAP@50_95)分别提升了1.9%和2.37%.
Foggy Weather Object Detection Method Based on YOLOX_s
This paper proposes a foggy weather object detection model based on depth-wise separable convolution and attention mechanism,aiming to achieve fast and accurate detection of objects in foggy scenes.The model consists of a dehazing module and a detection module,which are jointly trained during the training process.To ensure the accuracy and real-time performance of the model in foggy scenes,the dehazing module adopts AODNet to perform dehazing processing on input images,reducing the inter-ference of fog on the detected objects in the images.In the detection module,an improved version of the YOLOX_s model is used to output the confidence scores and position coordinates of the detected objects.To enhance the detection performance of the net-work,depth-wise separable convolution and attention mechanism are employed on the basis of YOLOX_s to improve the feature extraction capability and expand the receptive field of the feature maps.The proposed model can improve the detection accuracy of the model in foggy scenes without increasing the model parameters and computational complexity.Experimental results demon-strate that the proposed model performs excellently on the RTTS dataset and the synthesized foggy object detection dataset,ef-fectively enhancing the detection accuracy in foggy weather scenarios.Compared to the baseline model,the average precision(mAP@50_95)is improved by 1.9%and 2.37%respectively.

Foggy sceneObject detectionImage dehazingDepthwise separable convolutionAttention mechanism

娄铮铮、张欣、胡世哲、吴云鹏

展开 >

郑州大学计算机与人工智能学院 郑州 450000

雾天场景 目标检测 图像去雾 深度可分离卷积 注意力机制

国家自然科学基金青年科学基金国家自然科学基金青年科学基金

6200233062206254

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(7)