首页|基于动态图表示的设备故障推理预测方法

基于动态图表示的设备故障推理预测方法

扫码查看
高效的设备运维可以保障设备的正常运行.然而,随着设备复杂程度越来越高,设备的维护和故障排查的复杂度和难度也不断增加.因此,人工方式越来越不能满足智能化设备的运维需要.智能运维将人工智能等新兴技术运用于运维过程,可以作为设备运维的有力支撑.但现有的很多方法依旧存在着未考虑动态性等不足.针对上述问题,提出了一种基于动态知识图谱表示学习的设备故障推理预测方法,用于预测目标设备是否与故障设备存在潜在的关联.该方法结合动态知识图谱表示学习和图表示推理模型,可以利用实时数据更新图网络,并运用图表示推理模型对新的故障数据进行推理.首先,使用动态知识图谱来表示设备运维数据,记录设备随时间的演化过程,从而有效地表达设备之间关系的动态变化性;然后,通过表示学习获得动态知识图谱中源故障设备和目标设备的时间感知表示;最后,将时间感知表示作为输入进行故障推理预测,判断设备之间是否存在潜在的关联.预测结果可以辅助运维人员解决相应的设备故障问题.在多个数据集上进行了实验,验证了所提方法的有效性.
Device Fault Inference and Prediction Method Based on Dynamic Graph Representation
Effective equipment operation and maintenance is able to ensure the proper operation of equipment.Nevertheless,as the equipment becomes more and more sophisticated,the complexity and difficulty of maintaining and troubleshooting these devices are constantly increasing.As a result,equipment operation and maintenance mode that only rely on manual efforts is gradually un-able to meet the requirements of intelligent equipment.Intelligent operation and maintenance that applies many new emerging technologies such as artificial intelligence to process of operation and maintenance can be used as a strong support for equipment operation and maintenance task.However,many existing methods still have deficiencies such as lack of considering dynamic cha-racteristics.In order to solve these problems,a device fault inference and prediction method that is based on dynamic knowledge graph representation learning is proposed.The method can predict whether a target device is potentially associated with a faulty device time during the operation and maintenance process.The proposed method combines dynamic knowledge graph representa-tion learning with graph representation inference models,updates the graph network based on real-time data,and employs graph representation inference models to infer new fault data.Firstly,it takes advantage of a dynamic knowledge graph to represent the equipment operation and maintenance data,so as to records the evolution of the equipment over time.The representation effective-ly denote dynamic changes of the relationship between the devices.Next,the time-aware representations of the source faulty equipment and the target equipment in the dynamic knowledge graph are obtained through representation learning.Finally,the time-aware representations are used as inputs for fault inference prediction,which predicts whether there exists any potential cor-relation between the equipment so as to assist the operation and maintenance engineer in solving the corresponding equipment fault problems.Experiments on multiple datasets verify the effect of the proposed method.

Dynamic knowledge graphRepresentation learningLink inference predictionTime awarenessDevice operations and maintenance

张慧、张骁雄、丁鲲、刘姗姗

展开 >

国防科技大学第六十三研究所 南京 210007

国防科技大学大数据与决策实验室 长沙 410073

动态知识图谱 表示学习 链接推理预测 时间感知 设备运维

****能力**服务提升

24220407

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(7)
  • 3