首页|基于特征手性的数据无关模型评估方法

基于特征手性的数据无关模型评估方法

扫码查看
模型评估是评判卷积神经网络模型性能的重要手段,多用于卷积神经网络模型的设计、对比和应用过程.然而,现有的模型评估方法大多需要使用测试数据运行模型得到相关评估指标,当测试数据因隐私、版权与保密等原因无法获取时难以发挥作用.为了解决此问题,提出了一种数据无关的卷积神经网络模型评估方法,其利用特征手性的相关特性,通过计算卷积核之间的距离来确定模型的评估指标.所提方法利用不同卷积神经网络模型的性能表现与卷积核距离之间的负相关性,验证了在不使用测试数据的情况下,直接利用模型参数评估模型相对性能排名的可行性与有效性.对比实验表明,使用欧氏距离测度来评估AlexNet,VGGNets,ResNets,EfficientNets这4类包括17个卷积神经网络的模型精度时,该模型评估方法的盲评准确性高,能够较好地完成模型评估任务.
Data-free Model Evaluation Method Based on Feature Chirality
Evaluating the performance of convolutional neural network models is crucial,and model evaluation serves as a key component in the process,which is widely used in model design,comparison,and application.However,most existing model eva-luation methods rely on running models on test data to obtain evaluation indexes,so these methods are unable to deal with the situation where testing data is difficult to obtain due to privacy,copyright,confidentiality,and other reasons.To address the problem,this paper proposes a novel method to model evaluation that does not require testing data,instead,it is based on feature chirality.The model evaluation obtains the evaluation indexes of the models by calculating the kernel distance of different models.The negative correlation between model performance and kernel distance is then used to analyze model parameters and obtain the relative performance ranking of different models without accessing any testing data.Experimental results show that when using Euclidean distance,the proposed blind evaluation method achieves the highest accuracy across seventeen classic CNNs,including AlexNet,VGGNets,ResNets and EfficientNets.Thus,this method is an effective and viable approach for model evaluation.

Data-freeModel evaluationFeature chiralityDistance measureConvolution kernel distance

苗壮、季时鹏、吴波、付睿智、崔浩然、李阳

展开 >

陆军工程大学指挥控制工程学院 南京 210007

中国人民解放军32316部队 乌鲁木齐 830000

数据无关 模型评估 特征手性 距离测度 卷积核距离

江苏省自然科学基金

BK20200581

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(7)
  • 1