首页|基于熵值过滤和类质心优化的无监督域适应

基于熵值过滤和类质心优化的无监督域适应

扫码查看
无监督域适应作为机器学习领域的新兴研究方向之一,其主要利用源域监督信息来辅助无标记目标域的学习.截至目前,已有较多无监督域适应方法被提出,但在关系挖掘方面仍存在一些不足之处.具体来说,现有方法通常对目标域样本采取一致性处理策略,而忽略了目标域样本在关系挖掘中的差异性,因此文中提出了熵值过滤和类质心优化方法.所提方法利用生成对抗网络架构对目标域样本进行标记,利用所获伪标签计算样本熵值,并与所设阈值进行比较,从而进一步划分目标域样本.对于简单样本,分配伪标签;对于困难样本,该方法结合对比学习思想,利用源域和简单样本来学习更加鲁棒的分类器对困难样本分类,并进一步获得源和目标域的类质心.通过优化域间和实例对比对齐,来减小域间和域内的差异.最后,在3个标准数据集上与目前几种先进的领域自适应方法进行了对比实验,实验结果表明所提方法的性能均优于对比方法.
Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization
As one of the emerging research directions in the field of machine learning,unsupervised domain adaptation mainly uses source domain supervision information to assist the learning of unlabeled target domains.Recently,many unsupervised domain adaptation methods have been proposed,but there are still some deficiencies in relation mining.Specifically,existing methods usually adopt a consistent processing strategy for target domain samples,while ignoring the discrepancy in target domain samples in relation mining.Therefore,this paper proposes a novel method called entropy filtering and class centroid optimization(EFCO).The proposed method utilizes a generative adversarial network architecture to label target domain samples.With the obtained pseudo-labels,the sample entropy value is calculated and compared with a predefined threshold to further categorize target domain samples.Simple samples are assigned pseudo-labels,while difficult samples are classified using the idea of contrastive learning.By combining source domain data and simple samples,a more robust classifier is learned to classify difficult samples,and class cen-troids of the source and target domains are obtained.Inter-domain and intra-domain discrepancies are minimized by optimizing in-ter-domain contrastive alignment and instance contrastive alignment.Finally,it is compared with several advanced domain adapta-tion methods on three standard data sets,and the results indicate that the performance of the proposed method outperforms the comparison methods.

Transfer learningUnsupervised domain adaptationAdversarial learningContrastive learningClass centroid optimi-zation

田青、卢章虎、杨宏

展开 >

南京信息工程大学软件学院 南京 210044

南京信息工程大学数字取证教育部工程研究中心 南京 210044

南京大学计算机软件新技术国家重点实验室 南京 210023

南京信息工程大学计算机学院、网络空间安全学院 南京 210044

展开 >

迁移学习 无监督域适应 对抗学习 对比学习 类质心优化

国家自然科学基金南京大学计算机软件新技术国家重点实验室开放课题中央高校基本科研基金江苏省"青蓝工程"人才计划项目

62176128KFKT2022B06NJ2022028

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(7)
  • 1