首页|针对系统调用的基于语义特征的多方面信息融合的主机异常检测框架

针对系统调用的基于语义特征的多方面信息融合的主机异常检测框架

扫码查看
混淆攻击通过修改进程运行时产生的系统调用序列,可以在实现同等攻击效果的前提下,绕过主机安全防护机制的检测.现有的基于系统调用的主机异常检测方法不能对混淆攻击修改后的系统调用序列进行有效检测.针对此问题,提出了一种基于系统调用多方面语义信息融合的主机异常检测方法.从系统调用序列的多方面语义信息入手,通过系统调用语义信息抽象和系统调用语义特征提取充分挖掘系统调用序列的深层语义信息,利用多通道TextCNN实现多方面信息的融合以进行异常检测.系统调用语义抽象实现特定系统调用到其类型的映射,通过提取序列的抽象语义信息来屏蔽特定系统调用改变对检测效果的影响;系统调用语义特征提取利用注意力机制获取表征序列行为模式的关键语义特征.在ADFA-LD数据集上的实验结果表明,所提方法检测一般主机异常的误报率低于2.2%,F1分数达到0.980;检测混淆攻击的误报率低于2.8%,F1分数达到0.969,检测效果优于对比方法.
Host Anomaly Detection Framework Based on Multifaceted Information Fusion of Semantic Features for System Calls
Obfuscation attack can bypass the detection of host security protection mechanism on the premise of achieving the same attack effect by modifying the system call sequence generated by the process running.The existing system call-based host anoma-ly detection methods cannot effectively detect the modified system call sequence after obfuscation attacks.This paper proposes a host anomaly detection method based on the fusion of multiple semantic information of system call.This method starts with the multiple semantic information of the system call sequence,fully mining the deep semantic information of the system call sequence through the system call semantic information abstraction and the system call semantic feature extraction,and uses the multi-chan-nel TextCNN to realize the fusion of multiple information for anomaly detection.Semantic abstraction of system call can realize the mapping of specific system call to its type and shield the influence of specific system call change on detection effect by extrac-ting sequence abstract semantic information.The system call semantic feature extraction uses the attention mechanism to obtain the key semantic features that represent the sequence behavior pattern.Experimental results on ADFA-LD dataset show that the false alarm rate of this method for detecting general host anomaly is lower than 2.2%,and the F1 score reaches 0.980.The false alarm rate of detecting the confusion attack is lower than 2.8%,and the F1 score reaches 0.969.Is detection performance is bet-ter than that of other methods.

Host anomaly detectionSystem call semantic information fusionObfuscation attackDeep learningAttention mecha-nism

樊燚、胡涛、伊鹏

展开 >

战略支援部队信息工程大学信息技术研究所 郑州 450002

主机异常检测 系统调用语义信息融合 混淆攻击 深度学习 注意力机制

国家自然科学基金面上项目

62176264

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(7)