首页|面向幂律图的动态图存储结构Power-PCSR

面向幂律图的动态图存储结构Power-PCSR

扫码查看
图数据在现实生活中广泛存在,且不断发生变化.传统高效的静态图存储方式——压缩行/列(Compressed Sparse Row/Column,CSR/CSR)存储方式在更新图数据时需要大量的数据迁移,不适用于动态图数据.而能够高效更新图数据的邻接表(Adjacency List,AL)存储方式往往带有大量的指针,导致其图数据读取和分析效率低.Packed Compressed Sparse Row(PCSR)是一种基于CSR的动态图存储结构.该结构在存储边数据时并不是采用连续无空隙数组,而是采用留有空槽的压缩存储阵列(Packed Memory Arrays,PM A)结构,便于边数据的插入.因此,PCSR支持高效图更新和图分析.但是,PCSR在存储幂律图时,其性能容易受大度数顶点的影响.为此,基于PCSR提出一种支持可高效更新和分析动态幂律图的图存储结构Power-PCSR.该结构将幂律图中度数较大的顶点单独存储在一个独立的PMA中,其他所有小度数顶点与PCSR 一样存储在原PMA中.小度顶点变化导致的数据迁移不会触及大度数顶点,从而大大减少了数据迁移数量;同样,大度数顶点更新导致的数据迁移只限制在每个大度数顶点的PMA内部,不会涉及小度数顶点和其他大度数顶点的数据迁移.实验显示,Power-PCSR 在分析图数据时与PCSR具有相似的性能,而在更新图数据时比PCSR快2倍.
Power-PCSR:An Efficient Dynamic Graph Storage Structure for Power-law Graphs
Graph data is widespread in real life and changes over time.The traditional efficient static graph storage structure,compressed sparse row/column(CSR/CSC)requires a large amount of data migration when inserting/deleting edges to/from graphs,which is not suitable for dynamic graphs.Although the adjacency list(AL)is able to update graphs efficiently,it is ineffi-cient in reading and analyzing graphs since it has a large number of pointers,which results in random memory access.PCSR is a novel dynamic graph storage structure based on CSR.It employs a packed memory arrays(PM A)to store the edges rather than a continuous array.Because there are empty slots in PM A,it is easier to insert/delete edges.Thus,packed compressed sparse row(PCSR)is efficient in both graph updating and analysis.However,we find that the performance of PCSR suffers from large de-gree vertices when storing power-law graphs.For this,this paper proposes a new graph storage structure based on PCSR,Power-PCSR,which supports efficient updating and analysis of dynamic power-law graphs.In Power-PCSR,each large-degree vertex is stored in an independent PM A separately,and other vertices with small degrees are stored in a PM A.The data migration caused by the small-degree vertices will not lead to the migration of large-degree vertices,thus greatly reducing the amount of data mi-gration.Similarly,the data migration caused by the update of large-degree vertices is only limited to its PM A,and will not involve the data migration of other large-degree vertices and small-degree vertices.Experiments show that Power-PCSR has similar per-formance to PCSR when analyzing graphs,and is 2 times faster than PCSR when updating graph data.

Dynamic graph storageDynamic graph updatesData migrationPower-PCSRPower-law graph

毛志雄、刘志楠、高叙宁、王蒙湘、巩树凤、张岩峰

展开 >

东北大学计算机科学与工程学院 沈阳 110167

东北大学医学与生物信息工程学院 沈阳 110167

中国标准化研究院 北京 100088

动态图存储 动态图更新 数据迁移 Power-PCSR 幂律图

国家自然科学基金青年科学基金

62202088

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(8)
  • 2