首页|基于高深约束与边缘融合的单目3D目标检测

基于高深约束与边缘融合的单目3D目标检测

扫码查看
单目3D目标检测旨在通过单目图像完成3D目标检测,现有的单目3D目标检测算法大多基于经典的2D目标检测算法.针对单目3D目标检测算法中通过直接回归的实例深度估计不准,导致检测精度较差的问题,提出了一种基于高深约束与边缘特征融合的单目3D目标检测算法.在实例深度估计方法上采用几何投影关系下的实例3D高度与2D高度计算高深约束,将实例深度的预测转化为对目标的2D高度以及3D高度的预测;针对单目图像存在图像边缘截断目标,采用基于深度可分离卷积的边缘融合模块来加强对边缘目标的特征提取;对于图像中目标的远近造成的目标多尺度问题,设计了基于空洞卷积的多尺度混合注意力模块,增强了对最高层特征图的多尺度特征提取.实验结果表明,所提方法在KITTI数据集上的汽车类别检测精度相比基准模型提升了 7.11%,优于当前的方法.
Monocular 3D Object Detection Based on Height-Depth Constraint and Edge Fusion
Monocular 3D object detection aims to complete 3D object detection using monocular images,and most existing monoc-ular 3D object detection algorithms are based on classical 2D object detection algorithms.To address the issue of inaccurate in-stance depth estimation through direct regression in monocular 3D object detection algorithms,which leads to poor detection ac-curacy,a monocular 3D object detection algorithm based on height-depth constraint and edge feature fusion is proposed.In the in-stance depth estimation method,the height-depth constraint is calculated by the instance 3D height and 2D height under the geo-metric projection relationship,mainly converting the prediction of instance depth into the prediction of 2D height and 3D height of the object.To address the issue of object truncation at image edges in monocular images,an edge fusion module based on depth separable convolution is used to enhance the feature extraction of edge objects.For the multi-scale problem caused by the proximi-ty and distance of objects in the image,a multi-scale mix attention module based on dilated convolution is designed to enhance the multi-scale feature extraction of the highest layer feature map.Experimental results demonstrate the effectiveness of the proposed method,as it achieves a 7.11%improvement in car category detection accuracy compared to the baseline model on the KITTI dataset,outperforming the current methods.

Monocular 3D object detectionHeight-Depth constraintEdge fusionMulti-scale featureAttention mechanism

浦斌、梁正友、孙宇

展开 >

广西大学计算机与电子信息学院 南宁 530004

广西大学广西多媒体通信与网络技术重点实验室 南宁 530004

单目3D目标检测 高深约束 边缘融合 多尺度特征 注意力机制

国家自然科学基金

62171145

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(8)