首页|基于多样化标签矩阵的医学影像报告生成

基于多样化标签矩阵的医学影像报告生成

扫码查看
医学影像在医学诊断中具有重要作用,而准确描述的文本报告对于理解图像以及后续疾病诊断是必不可少的.目前在医学影像报告生成领域,基于模式化方法生成规范的文本报告成为近年的研究热点.但正负样本数量差距较大导致的数据偏差问题,使得生成的报告内容普遍倾向于描述正常状况,难以准确捕捉异常信息.为解决这一问题,提出了一种基于多样化标签矩阵的医学报告生成方法,可以对不同的疾病进行差异化学习,生成多样化的医疗报告;设计文本-矩阵特征损失函数,优化多样化标签矩阵;增加特征交叉模块改进Transformer网络,加强图像与文本的映射,提升疾病描述的准确性.在IU-X-Ray和MIMIC-CXR两个数据集上进行实验,实验结果表明,与目前的主流方法相比,所提方法在BLEU,METEOR等多个指标上取得了最优的效果.
Diversified Label Matrix Based Medical Image Report Generation
Medical images play a vital role in medical diagnosis.Accurately described text reports are essential for understanding images and subsequent disease diagnosis.In recent years,the generation of standardized reports based on modeling methods has become a research hotspot in the field of medical imaging report generation.However,due to the data deviation problem caused by the large gap between positive and negative samples,the content of the generated report generally tends to describe the normal situation.This limitation creates challenges in accurately capturing abnormal information.To address this issue,this paper propo-ses a novel approach based on diversified label matrix for medical report generation.This method utilizes a diverse label matrix to perform differential learning on different diseases and generate diverse medical reports.Additionally,a text-matrix feature loss function is designed to optimize the diverse label matrix,enhancing its effectiveness.Furthermore,the Transformer network is en-hanced by incorporating a feature intersection module.This module strengthens the mapping between images and text,and im-proves accuracy in disease description.Experimental results on the two datasets of IU-X-Ray and MIMIC-CXR show that,the proposed method achieves the best results in multiple indicators,such as BLEU and METEOR,compared with the current main-stream methods.

Deep learningMedical report generationAttention mechanismImage-Text generationMulti-modal

张俊三、程铭、沈秀轩、刘玉雪、王雷全

展开 >

中国石油大学(华东)青岛软件学院、计算机科学与技术学院 山东青岛 266580

深度学习 医学影像报告生成 注意力机制 图像-文本生成 多模态

山东省自然科学基金山东省自然科学基金

ZR2020MF006ZR2022LZH015

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(8)