首页|基于双鉴别器和伪视频生成的视频异常检测方法

基于双鉴别器和伪视频生成的视频异常检测方法

扫码查看
在无监督的视频异常检测任务中,通常使用深度自编码器在仅包含正常事件的数据集上进行训练,并根据重构(预测)误差来识别异常帧.然而,这种假设在实践中并不总是成立,有时自编码器对异常事件也可以进行很好的重构(预测),从而导致异常的误检测.为了解决这一问题,提出了一种基于双鉴别器和伪视频生成的视频异常检测方法,通过鉴别器和生成器之间的对抗训练来提高生成模型对正常帧的预测能力,并抑制生成模型对伪视频帧的预测能力.此外,在生成模型中引入协调注意力,以进一步提升模型的生成能力.同时,将以往方法中的预测未来帧改为预测中间帧,有利于模型学习前向和后向的运动信息,从而提升模型的检测性能.在公开数据集UCSD Ped2和CUHK Avenue上进行实验,结果表明,AUC值在两个公开数据集上分别达到了 98.6%和85.9%,相比其他视频异常检测方法,所提方法可显著提高视频异常检测的性能.
Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation
In unsupervised video anomaly detection tasks,deep autoencoders are typically trained on datasets containing only nor-mal events and use reconstruction(prediction)error to identify anomalous frames.However,this assumption does not always true in practice because sometimes autoencoders can reconstruct(predict)anomalous events well,leading to false alarms.To address this issue,this paper proposes a video anomaly detection method based on dual discriminators and pseudo video generation,which enhances the generation model's prediction capability of normal frames and suppresses its prediction capability of pseudo video frames through adversarial training between the discriminator and the generator.Moreover,the introduction of coordinated atten-tion in the generation model further improves its detection performance.Additionally,by predicting intermediate frames instead of future frames in previous methods,the model can learn forward and backward motion information,which further enhances its de-tection performance.Experimental results on the publicly available datasets UCSD Ped2 and CUHK Avenue demonstrate that the proposed method achieves AUC values of 98.6%and 85.9%,respectively,outperforming other video anomaly detection methods significantly.

Video anomaly detectionDeep learningGenerative adversarial networkPseudo-videoPrediction

郭方圆、吉根林

展开 >

南京师范大学计算机与电子信息学院/人工智能学院 南京 210023

视频异常检测 深度学习 生成对抗网络 伪视频 预测

国家自然科学基金

41971343

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(8)