首页|超立方体在对称PMC模型下的g-好邻条件诊断度和g-额外条件诊断度

超立方体在对称PMC模型下的g-好邻条件诊断度和g-额外条件诊断度

扫码查看
故障诊断在维持多处理器系统的可靠性中起到了至关重要的作用,而诊断度是系统诊断能力的一个重要度量参数.除经典诊断度外还有条件诊断度,如g-好邻条件诊断度、g-额外条件诊断度等.其中g-好邻条件诊断度是在每个无故障顶点至少有g个无故障邻点的条件下定义的一种条件诊断度,g-额外条件诊断度是在每个无故障分支包含超过g个顶点的条件下定义的一种条件诊断度.故障诊断需要在特定的诊断模型下进行,如PMC模型、对称PMC模型等.对称PMC模型是在PMC模型的基础上通过添加两个假设而提出的一种新的诊断模型.n维超立方体因具有多种优越性质而被研究者们广泛研究.目前有不少在PMC模型下的诊断度研究,但缺乏在对称PMC模型下的诊断度研究.文中首先证明了超立方体在对称PMC模型下的 好邻条件诊断度的上界和下界,当n≥4且0≤g≤n-4时上界为2g+1(n-g-1)+2g-1,当g≥0且n≥max{g+4,2g+1-2-g-g-1}时下界为(2n-2g+1+1)2g-1+(n-g)2g-1-1.还证明了超立方体在对称PMC模型下的g-额外条件诊断度的上界和下界,当n≥4且0≤g≤n-4时上界为2n(g+1)-5g-2C2g-2,当n≥4且0≤g≤min{n-4([)2/3n(])}时下界为3/2n(g+1)-g-5/2C2g+1-1.最后通过模拟实验验证了相关理论结果的正确性.
g-Good-Neighbor Conditional Diagnosability and g-Extra Conditional Diagnosability of Hypercubes Under Symmetric PMC Model
Fault diagnosis plays a very important role in maintaining the reliability of multiprocessor systems,and the diagno-sability is an important measure of the diagnosis capability of the system.Except for the traditional diagnosability,there are also conditional diagnosability,such as g-good-neighbor conditional diagnosability,g-extra conditional diagnosability,etc.Where g-good-neighbor conditional diagnosability is defined under the condition that every fault-free vertex has at least g fault-free neigh-bors,and g-extra conditional diagnosability is defined under the condition that every fault-free component contains more than g vertices.Fault diagnosis needs to be performed under a specific diagnosis model,such as PMC model,symmetric PMC model,in which the symmetric PMC model is a new diagnosis model proposed by adding two assumptions to the PMC model.The n-dimen-sional hypercube has many excellent properties,so it has been widely studied by researchers.At present,there are a number of diagnosability studies under the PMC models,but there is a lack of diagnosability studies under the symmetric PMC models.This paper first investigates the upper and lower bounds for the g-good-neighbor conditional diagnosability of hypercubes under the symmetric PMC model,with an upper bound of 2g+1(n-g-1)+2g-1 when n≥4 and 0≤g≤n-4 and a lower bound of(2n-2g+1+1)2g-1+(n-g)2g-1-1 when g≥0 and n≥max{g+4,2g+1-2-g-g-1}.Also study the upper and lower bounds for the g-extra conditional diagnosability of hypercubes under the symmetric PMC model,the upper bound is 2n(g+1)-5g-2C2g-2 when n≥4 and 0≤g≤n-4,and the lower bound is 3/2n(g+1)-g-5/2 C2g+1-1 when n ≥4 and 0≤g≤min{n-4,([)2/3n(])}.Fi-nally,the correctness of the relevant theoretical conclusions is verified by simulation experiments.

Interconnection networkHypercubeSystem level diagnosisSymmetric PMC modelConditional diagnosability

涂远杰、程宝雷、王岩、韩月娟、樊建席

展开 >

苏州大学计算机科学与技术学院 江苏苏州 215006

苏州大学信息化建设与管理中心 江苏苏州 215006

互连网络 超立方体 系统级诊断 对称PMC模型 条件诊断度

国家自然科学基金国家自然科学基金

6217229162272333

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(9)