首页|艺术美感增强的图像任意风格迁移

艺术美感增强的图像任意风格迁移

扫码查看
目前的研究表明,通用风格迁移取得了显著成功,即能将任意视觉风格迁移到内容图像.然而,在图像任意风格迁移的评价维度中,只考虑语义结构的保留度和风格图案的多样性是不全面的,还应将艺术美感纳入考量范围.现有方法普遍存在艺术美感不自然的问题——表现为风格化图像中会出现不和谐的图案和明显的伪影,很容易与真实的艺术作品区分开来.针对该问题,提出了一种艺术美感增强的图像任意风格迁移方法.首先,设计了一个多尺度艺术美感增强模块,通过提取不同尺度的风格图像特征,改善了风格化图案不和谐的问题;同时,设计了一个美感风格注意力模块,使用通道注意力机制,根据艺术美感特征的全局美感通道分布自适应地匹配并增强相应的风格特征;最后,提出了一个协方差变换融合模块,将增强后的风格特征的二阶统计数据迁移到对应的内容特征上,在很好地保留内容结构的同时实现了美感增强的风格迁移.通过与4种最新的风格迁移方法进行定性比较,同时进行消融实验,分别验证了所提模块与所加损失函数的有效性;在5项定量指标的对比中,有4项取得最优分数.实验结果表明,所提方法可以生成艺术美感更和谐的风格迁移图像.
Image Arbitrary Style Transfer via Artistic Aesthetic Enhancement
Current research has shown remarkable success in universal style transfer,which can transfer arbitrary visual styles to content images.However,in the evaluation dimension of arbitrary style transfer of images,it is not comprehensive to only consi-der the retention of semantic structure and the diversity of style patterns,and the artistic aesthetics should also be taken into ac-count.Existing methods generally have the problem of artistic aesthetic unnaturalness,which is manifested in the disharmonious patterns and obvious artifacts in the stylized images which are easy to distinguish from the real paintings.To solve this problem,a novel artistic aesthetic enhancement image arbitrary style transfer(AAEST)approach is proposed.Specifically,first,a multi-scale artistic aesthetic enhancement module is designed to improve the problem of disharmonious patterns by extracting style image features at different scales.At the same time,an aesthetic-style attention module is designed,which uses the channel atten-tion mechanism to adaptively match and enhance style features according to the global aesthetic channel distribution of the aes-thetic features.Finally,a covariance transformation fusion module is proposed to transfer the second-order statistics of the en-hanced style features to the corresponding content features,so as to achieve aesthetic-enhanced style transfer while preserving the content structure.The effectiveness of the proposed module and the added loss function are verified by qualitative comparison with the latest four style transfer methods and ablation experiments.In the comparison of five quantitative indicators,four achieve optimal scores.Experimental results show that the proposed method can generate more harmonious style transfer images.

Image style transferArtistic aestheticChannel attentionCovariance transformationFeature fusion

李鑫、普园媛、赵征鹏、李煜潘、徐丹

展开 >

云南大学信息学院 昆明 650500

云南省高校物联网技术及应用重点实验室 昆明 650500

图像风格迁移 艺术美感 通道注意力 协方差变换 特征融合

国家自然科学基金国家自然科学基金国家自然科学基金云南省科技厅应用基础研究计划重点项目云南省重大科技专项

612713616176104662162068202001BB050043202302AF080006

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(9)