首页|一种语义引导的神经网络关键数据路由路径算法

一种语义引导的神经网络关键数据路由路径算法

扫码查看
近年来,由于人工智能在各领域的普及,研究神经网络的可解释方法及理解神经网络的运作机理已经成为一个愈发重要的话题.作为神经网络解释性方法的一个分支,网络的路径可解释性受到了越来越多的关注.文中特别探讨了关键数据路由路径(Critical Data Routing Path,CDRP)这一面向网络路径的可解释方法.首先,通过 Score-CAM(Score-Class Activation Map)方法分析了 CDRP在输入域上的路径可视化归因,指出CDRP方法在语义层面的潜在缺陷.然后,提出了 一种语义引导的Score-CDRP方法,从方法机理上提升了 CDRP与原始神经网络的语义一致性.最后,通过实验从路径热力图可视化以及相应的预测与定位精度等角度验证了 Score-CDRP方法相较于CDRP的合理性、有效性和鲁棒性.
Semantic-guided Neural Network Critical Data Routing Path
In recent years,with the popularity of artificial intelligence in various fields,it has become an increasingly important topic to study the interpretable methods of neural networks and understand their running principles.As a subfield of neural net-work interpretability methods,the interpretability of network pathways garners increasing attention.This paper particularly focu-ses on the critical data routing path(CDRP),an interpretable method for network pathways.Firstly,the routing path visualization attribution of CDRP in the input domain is analyzed by use of the score-class activation map(Score-CAM)method,pointing out the inherent defects of the CDRP approach in terms of semantics.Then a channel semantic guided CDRP method termed as Score-CDRP is proposed,which improves the semantic consistency between the original deep neural network and its corresponding CDRP from the perspective of method mechanism.Lastly,experimental results demonstrate that the proposed Score-CDRP ap-proach is more reasonable,effective and robust than CDRP in terms of visualization of the routing path heatmap as well as its cor-responding prediction and localization accuracy.

Computer visionDeep neural networksInterpretability of neural networksFeature visualizationNetwork pruningHeatmap

朱富坤、滕臻、邵文泽、葛琦、孙玉宝

展开 >

南京邮电大学通信与信息工程学院 南京 210003

南京邮电大学贝尔英才学院 南京 210042

南京信息工程大学教育部数字取证工程研究中心 南京 210044

计算机视觉 深度神经网络 神经网络可解释性 特征可视化 网络剪枝 热力图

国家自然科学基金国家自然科学基金

6177125061972213

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(9)