首页|基于时空间联合去噪的改进差分进化算法

基于时空间联合去噪的改进差分进化算法

扫码查看
在工程问题的优化求解过程中,对个体的适应度评价可能会受到环境噪声的干扰,进而影响对种群进行合理的优胜劣汰操作,造成算法性能下降.为了对抗噪声环境的影响,提出了一种基于时空间联合去噪的改进差分进化算法(SEDADE).根据适应度排名将种群划分成两个子种群,对评价较差个体组成的子种群用分布估计算法(EDA)进化,采用高斯分布建模解空间,利用解空间中多个个体噪声的随机性抵消噪声影响;对评价较好个体组成的子种群用差分进化算法(DE)进化,并且引入基于时间的停滞重采样机制去噪,提高收敛精度.对时空间混合进化得到的两个子种群进行基于概率选择的EDA信息利用操作,利用EDA搜索得到的全局信息引导DE的搜索方向,避免陷入局部最优.在实验中使用了被零均值高斯噪声干扰的基准函数,可以发现SEDADE相比其他算法更具有竞争性,此外通过消融实验验证了所提算法包含的3个机制的有效性和合理性.
Improved Differential Evolution Algorithm Based on Time-Space Joint Denoising
In the optimization process of solving engineering problems,the evaluation of individual fitness may be affected by en-vironmental noise,so as to affect the reasonable survival of the fittest operation on the population,and result in a decline in algo-rithm performance.In order to combat the impact of noise environment,an improved differential evolution algorithm(SEDADE)based on joint temporal and spatial denoising is proposed.The population is divided into two subpopulations according to fitness ranking,and the subpopulations composed of poorly evaluated individuals are evolved using a distribution estimation algorithm(EDA).Gaussian distribution is used to model the solution space,using the randomness of multiple individual noises in the solu-tion space to offset the noise impact.Differential evolution algorithm(DE)is used to evolve subpopulations with better evaluated individual composition,and a time-based stagnation resampling mechanism is introduced to denoise to improve convergence accu-racy.The EDA information utilization operation based on probability selection is performed on the two subpopulations derived from time-space mixed evolution,and the global information obtained from EDA search is used to guide the search direction of DE to avoid falling into local optimization.In the experiment,a benchmark function interfered by zero mean Gaussian noise is used,and it is found that SEDADE is competitive with other algorithms.In addition,the effectiveness and rationality of the proposed mechanism are verified through ablation experiments.

Differential evolutionDistribution estimationNoiseResamplingHybrid evolutionInformation utilization

王彬、张鑫雨、金海燕

展开 >

西安理工大学计算机科学与工程学院 西安 710048

西安理工大学陕西省网络计算与安全技术重点实验室 西安 710048

差分进化 分布估计 噪声 重采样 混合进化 信息利用

国家自然科学基金国家自然科学基金

6227238362372369

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(9)