首页|增广立方体上边独立生成树的并行构造

增广立方体上边独立生成树的并行构造

扫码查看
近年来,围绕互连网络的研究工作越来越多.其中独立生成树(Independent Spanning Trees,ISTs)可以应用于信息的可靠传输、并行传输、安全分发以及故障服务器的并行诊断中,因此受到了许多研究者的关注.在一对多广播、可靠通信、多节点广播、容错广播、安全消息分发、IP快速重路由等网络通信中,边独立生成树(Edge-Independent Spanning Trees,EISTs)发挥着重要作用.n维增广立方体AQn是"维超立方体Qn的节点对称变型,它具有超立方体及其变型所没有的一些可嵌入性质.然而,目前增广立方体上边独立生成树的构造方法都是串行构造的.文中首先提出了一种并行算法,用于构造以AQn中的任意节点为根的2n-1棵树.然后证明算法得到的2n-1棵树是高度为n的边独立生成树,算法的时间复杂度为O(N),其中N表示增广立方体中的节点数.最后通过模拟实验来验证了所提方法的准确性.
Parallel Construction of Edge-independent Spanning Trees in Augmented Cubes
In recent years,more and more research work is being conducted around interconnected networks.Independent span-ning trees(ISTs)can be used in reliable transmission,parallel transmission,safe distribution of information,and parallel diagnosis of fault servers,and have attracted many researchers'attention.In network communication,such as one-to-all broadcasting,relia-ble communication,multi-node broadcasting,fault-tolerant broadcasting,secure message distribution,and IP fast rerouting,edge-independent spanning trees(EISTs)play a significant role.The augmented cube of n dimension AQn is a node-symmetric variation of the n-dimensional hypercube Qn,it has some embeddable properties that the hypercube and its variants do not have.However,the current EISTs construction methods in augmented cubes are serial construction.This paper first proposes parallel algorithms for constructing 2n-1 trees rooted at any node in AQn.Then,it proves that the 2n-1 trees obtained by algorithms are EISTs with the height n,and the algorithms'time complexity is O(N),where N equals the number of nodes in AQn.Finally,its accura-cy is verified by simulation experiment.

Interconnection networkAugmented cubeEdge-independent spanning treesParallel algorithmHeight

李夏晶、程宝雷、樊建席、王岩、李晓瑞

展开 >

苏州大学计算机科学与技术学院 江苏苏州 215006

苏州大学江苏省计算机信息处理技术重点实验室 江苏苏州 215006

互连网络 增广立方体 边独立生成树 并行算法 高度

国家自然科学基金国家自然科学基金江苏省教育厅未来网络科研基金资助江苏高校优势学科建设工程资助项目

6227233362172291FNSRFP-2021-YB-39

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(9)