首页|融合多模态物联网设备指纹与集成学习的物联网设备识别方法

融合多模态物联网设备指纹与集成学习的物联网设备识别方法

扫码查看
现有物联网设备识别方法存在表征设备指纹的特征维度单一、流量特征信息选择不完备的问题,导致对流量特征的表征能力不足,且未充分挖掘多个网络模型的识别潜能,进而导致识别效果不够理想.针对上述不足,文中提出了 一种融合多模态物联网设备指纹与集成学习的物联网设备识别(MultiDI)方法.首先,为了在保证流量特征信息不丢失的同时,提高物联网设备指纹的特征表示能力,通过将改进的Nilsimsa算法和数据图像化处理方法相结合,研究并提出一种多模态物联网设备指纹生成算法;然后,基于所生成的物联网设备指纹特征,使用3个神经网络模型深入挖掘多模态指纹特征的不同维度信息,对物联网设备的流量特征进行更充分的学习和识别;最后,为了进一步挖掘多个网络模型的识别潜能,通过分类加权和LeakyRelu激活函数构建分类连接网络,借助所提出的分类连接网络进行集成学习,用以整合多个网络模型的识别结果从而增强MultiDI方法的物联网设备识别准确率.实验结果表明,MultiDI方法在3个数据集上分别取得了 91.3%,98.6%和99.2%的加权F1值,验证了该方法的有效性;与多种物联网设备识别方法相比,在识别效果上呈现出相对优势,验证了该方法的高效性.
IoT Device Recognition Method Combining Multimodal IoT Device Fingerprint and Ensemble Learning
The existing IoT device recognition methods have the problems of single feature dimension for characterizing device fingerprints,incomplete selection of traffic feature information,which easily lead to insufficient ability to characterize traffic fea-tures,and fail to fully exploit the recognition potential of multiple network models,resulting in unsatisfactory recognition results.To address these problems,this paper proposes a method called MultiDI(IoT device recognition method combining multimodal IoT device fingerprint and ensemble learning).First,to enhance the feature representation ability of IoT device fingerprints while preserving the traffic feature information,an improved Nilsimsa algorithm and data visualization method are combined to develop a multimodal IoT device fingerprint generation algorithm.Then,based on the generated IoT device fingerprint features,three neu-ral network models are used to explore the different dimensional information of multimodal fingerprint features,enabling more comprehensive learning and recognition of IoT device traffic features.Lastly,to further explore the recognition potential of multi-ple network models,a classification connection network is constructed using weighted classification and LeakyRelu activation function.The proposed classification connection network is employed for ensemble learning,integrating the recognition results from multiple network models to enhance the accuracy of the MultiDI method for IoT device recognition.Experimental results show that the MultiDI method achieves 91.3%,98.6%and 99.2%weighted F1 values on the three datasets,respectively,which verifies its effectiveness.Compared with multiple IoT device recognition methods,it presents a relatively good recognition effect,verifing its efficiency.

Network trafficMultimodal IoT device fingerprintEnsemble learningIoT device recognition

卢徐霖、李志华

展开 >

江南大学人工智能与计算机学院 江苏无锡 214122

网络流量 多模态物联网设备指纹 集成学习 物联网设备识别

工业和信息化部智能制造项目中央高校基本科研业务费专项资金中央高校基本科研业务费专项资金

ZH-XZ-180004JUSRP211A41JUSRP42003

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(9)