首页|基于视频理解的教学过程感知与分析

基于视频理解的教学过程感知与分析

扫码查看
课堂是教育教学的核心阵地,对教师在课堂上的教学环节进行过程化监测和评价是提高课堂教学质量的有效途径.然而,现有基于人工的评价模式存在评价效率低下、易干扰课堂教学、主观误差等缺点,难以达到理想的效果.鉴于人工智能技术的快速发展,提出将以人为中心的智能感知与分析技术引入教师的教学过程中,对教师主体进行实时识别与分析.首先,通过人脸检测算法定位教师实时位置并进行位移分析;其次,利用视线估计算法对教师的关注区域进行检测;最后,采用基于骨架点的动作识别和表情识别对教师的动作和表情进行感知与分析.同时,对指标进行量化统计,以更为高效、客观地了解教师的教学特点,从而帮助教师针对性地改善其授课质量.在相同配置环境下的实验结果表明,该系统的各模块在相应任务中的表现较好,符合教学场景下的使用要求.从在真实的教学视频上的测试结果来看,所设计的系统能够较为准确地感知教师的教学状态,为提升授课质量提供建设性意见.
Perception and Analysis of Teaching Process Based on Video Understanding
The classroom serves as the core battleground for education.Monitoring and evaluating teachers'instructional activi-ties in the classroom is an effective means of improving the quality of teaching.However,existing manual evaluation methods suf-fer from drawbacks such as low efficiency,potential disruption of classroom dynamics,and subjective errors,making it difficult to achieve satisfactory results.Given the rapid development of artificial intelligence(AI)technology,it is proposed to integrate hu-man-centered intelligent analysis techniques into teachers'instructional processes for real-time recognition and analysis of tea-chers.First,a facial detection algorithm is employed to locate the teacher's position and estimate their movements.Second,a gaze estimation algorithm is utilized to detect the teachers'focal points.Lastly,skeleton-based action recognition and facial expression recognition are employed to perceive and analyze teachers'actions and expressions.Quantitative statistics on the indicators pro-vide a more efficient and objective understanding of teachers'teaching characteristics,so as to help teachers improve their tea-ching quality.As experimented in the same configuration environment,the modules of the system perform well in the correspon-ding tasks and fulfill the requirements in teaching scenarios.From the evaluation results on real-world teaching videos,the system is designed to accurately perceive the teachers'instructional states,providing constructive feedback for enhancing teaching quality.

Teaching quality assessmentVideo understandingDisplacement estimationGaze estimationAction recognitionFacial expression recognition

段欣然、王玫、韩天利、周洪宇、郭俊奇、计卫星、黄华

展开 >

北京师范大学人工智能学院 北京 100875

教学质量评估 视频理解 位移分析 视线估计 动作识别 表情识别

国家自然科学基金

62306043

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(10)