首页|结构影响力及标签冲突感知的图课程学习方法

结构影响力及标签冲突感知的图课程学习方法

扫码查看
近年来,图神经网络(GNNs)已成为图学习领域的热点研究问题.受益于消息传递机制,GNNs在各类基于图的任务上均取得了优越的性能.现有的GNNs方法大多基于图中所有节点的训练难度相同的假设,然而,节点在结构影响力和邻域标签异配性等方面具有明显的差异.为此,提出了一种结构影响力及标签冲突感知的图课程学习方法(SILC-GCL),基于节点的训练难度对GNNs模型进行课程学习.首先,设计了 一种综合考虑节点的PageRank影响力值以及邻域标签冲突程度的训练难度测量器;其次,采用了一个训练调度器,用于在每个训练阶段选择训练难度合适的节点并生成一个由易到难的训练节点序列;最后在GNNs骨架模型上进行训练.在6个现实网络数据集上进行的节点分类实验均验证了 SILC-GCL方法的有效性.
Structural Influence and Label Conflict Aware Based Graph Curriculum Learning Approach
In recent years,graph neural networks(GNNs)have emerged as a prominent research area in the field of graph lear-ning.Leveraging the message passing mechanism,GNNs have showcased remarkable performance across diverse graph-based tasks.However,most existing GNNs methods assume uniform training difficulty across all nodes,disregarding the significant va-riability in the importance and contributions of different nodes.To address this problem,this paper proposes a structural influence and label conflict aware graph curriculum learning method(SILC-GCL),which takes the training difficulty of nodes into conside-ration.To begin with,a difficulty measure is designed through both the graph structure and node label semantics,calculating the PageRank value of nodes and the label conflict degree between nodes and their neighbors.Subsequently,a training scheduler is employed to select nodes with appropriate training difficulty at each training stage and then generate a sequence of training nodes from easy to difficult.Finally,SILC-GCL is trained based on backbone GNNs models.Experimental results of node classification on six benchmark datasets verify the effectiveness of SILC-GCL.

Graph representation learningGraph neural networksCurriculum learningNode classification

刘祖龙、陈可佳

展开 >

南京邮电大学计算机学院 南京 210023

江苏省大数据安全与智能处理重点实验室(南京邮电大学) 南京 210023

南京大学软件新技术重点实验室 南京 210023

图表示学习 图神经网络 课程学习 节点分类

国家自然科学基金南京大学计算机软件新技术国家重点实验室开放课题南京邮电大学校级科研基金

61876091KFKT2022B01NY221071

2024

计算机科学
重庆西南信息有限公司(原科技部西南信息中心)

计算机科学

CSTPCD北大核心
影响因子:0.944
ISSN:1002-137X
年,卷(期):2024.51(10)